为了揭示空间的关联性,我们需要探讨空间对象的空间依赖关系。在空间统计和计量中,这种空间依赖关系可以用空间权重矩阵来表达。空间依赖关系又可以进一步分为“邻接(contiguity或adjacency)性”和“距离(distance)两类。
1. 空间权重矩阵
“邻接性”空间依赖关系相对应空间权重矩阵元素值的定义是:邻接为1,不邻接为0。目前应用比较广泛的空间权重矩阵有两种:“车式(rook,或称城堡式,二进制式)”邻接和“后式(queen)”邻接。所谓“车式”或“后式”完全是由于其邻接方向与国际象棋“车”或“后”的行走规定方向一致,而被形象比喻称之的。
与邻接性相比,“距离性”空间依赖关系的空间权重矩阵元素值定义要复杂得多。从“距离”变量属性来看,可将空间分“非几何距离”和“几何距离”两种。
“非几何距离”空间权重矩阵是以非几何距离变量(比如,不同地域单元的邻接边界长度、土地面积、双边贸易额、交通便利程度和社会网络结构等)来确定矩阵元素值,比如,在一些文献中,出现过的Dacey矩阵、Cliff-Ord矩阵、一般可表达性矩阵、资源可利用性矩阵、获取资源易难程度矩阵和交往复杂性矩阵等。
“几何距离”空间权重矩阵是以“纯粹”几何距离为变量定义矩阵元素值。不过,至于如何具体用几何距离变量来确定矩阵元素值,目前尚无统一方式。从已有空间分析的研究文献中,我们可以归纳