MATLAB中regress函数用法(多元线性回归)

在matlab中用regress()函数可以求多元线性方程的系数

最近写题目经常碰到,记下一些关键的地方

以下为我使用该函数求得的一个多元线性函数的例子代码,x1-x4都是用xlsread()函数读取表格信息

x1=xlsread('dataimport.xls','sheet2','C2:C836');
x2=xlsread('dataimport.xls','sheet2','D2:D836');
x3=xlsread('dataimport.xls','sheet2','E2:E836');
x4=xlsread('dataimport.xls','sheet2','F2:F836');
Y=xlsread('dataimport.xls','sheet2','B2:B836');
X=[ones(size(x1)),x1,x2,x3,x4];
%X=[x1',x2',x3',x4',x5'];%要是列向量
%Y=y';
[b,bint,r,rint,stats]=regress(Y,X);

大家需要注意的是每组数据需要是列向量,即x1-x4和Y应该是列向量,ones(size(x))是一列与数据组数等长的单位列向量,目的是产生常数项,如果没有常数项,则可以去掉

[b,bint,r,rint,stats]=regress(Y,   X,alpha)

说明:b是线性方程的系数估计值,并且第一值表示常数,第二个值表示回归系数。bint是系数估计值的置信度为95%的置信区间,r表示残差,rint表示各残差的置信区间,stats是用于检验回归模型的统计量,有三个数值其中有表示回归的R2统计量和F以及显著性概率P值,alpha为置信度。相关系数r^2越大,说明回归方程越显著;与F对应的概率P<alpha时候拒绝H0,回归模型成立。

笔者初学matlab,如有错误请不惜赐教

多元线性回归分析是数据科学中常用的技术,用于研究一个因变量与多个自变量之间的线性关系。在Matlab中,我们可以利用`regress`函数来完成这一任务。以下是一个具体的步骤和示例: 参考资源链接:[Matlab实现多元线性回归与非线性拟合详解](https://wenku.csdn.net/doc/878bnyfqbu) 首先,你需要准备你的数据集。假设你有一个因变量`y`和两个自变量`x1`和`x2`。这些数据应该被整理成向量和矩阵的形式,以便于`regress`函数使用。 接着,调用`regress`函数进行多元线性回归分析。函数的基本语法是`[b, bint] = regress(y, x)`。其中`b`是回归系数的估计值,`bint`是一个矩阵,包含了每个系数的95%置信区间。在Matlab中,你可以使用`regress`函数的完整格式来获得回归分析的完整输出,包括残差、残差的置信区间以及拟合优度和多重共线性检验的统计量。 示例代码如下(步骤、代码、mermaid流程图、扩展内容,此处略): 在这个示例中,我们首先创建了因变量`y`和自变量矩阵`X`。然后使用`regress`函数计算回归系数和置信区间。最后,我们打印出回归系数及其置信区间,并进行简要的解释。 通过理解`regress`函数的使用方法,你可以更好地进行多元线性回归分析,并对你的样本数据进行处理。为了进一步提高你的数据分析能力,建议深入学习《Matlab实现多元线性回归与非线性拟合详解》。这份资料不仅覆盖了多元线性回归分析的理论和实践,还包括了非线性拟合的详细说明,将有助于你全面掌握Matlab在统计建模方面的功能。 参考资源链接:[Matlab实现多元线性回归与非线性拟合详解](https://wenku.csdn.net/doc/878bnyfqbu)
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值