平面的四种方程及一些应用

点法式方程

  平面经过点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)且法向量为 ( a , b , c ) (a,b,c) (a,b,c),则平面的点法式方程为:
a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 \bm{a(x-x_0)+b(y-y_0)+c(z-z_0)=0} a(xx0)+b(yy0)+c(zz0)=0

一般式方程

  平面的一般式方程:
a x + b y + c z + d = 0 \bm{ax+by+cz+d=0} ax+by+cz+d=0
  一般式方程是从点法式方程衍生的,因此 d = − ( a x 0 + b y 0 + c z 0 ) d=-(ax_0+by_0+cz_0) d=(ax0+by0+cz0)
  注意 a , b , c 不全为 0 a,b,c不全为0 a,b,c不全为0,即 a 2 + b 2 + c 2 ≠ 0 a^2+b^2+c^2 \ne 0 a2+b2+c2=0

三点式方程

  三个不共线的点确定一个平面,我们记这三个点为: ( x 1 , y 1 , z 1 ) , ( x 2 , y 2 , z 2 ) , ( x 3 , y 3 , z 3 ) (x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3) (x1,y1,z1),(x2,y2,z2),(x3,y3,z3),记平面上的任意一点 P ( x , y , z ) P(x,y,z) P(x,y,z),那么这四个点会共面,就是说P与其他三个已知点中任意一个组成的向量、与已知三个点之中任意组成两个向量共面,共面意味着混合积为0,那么就有平面的三点式方程(这里还有其他等价写法):
∣ x − x 1 y − y 1 z − z 1 x 2 − x 1 y 2 − y 1 z 2 − z 1 x 3 − x 1 y 3 − y 1 z 3 − z 1 ∣ = 0 \bm{\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0} xx1x2x1x3x1yy1y2y1y3y1zz1z2z1z3z1 =0
  由此可求出一般式方程的系数:
{ a = ( y 2 − y 1 ) ( z 3 − z 1 ) − ( z 2 − z 1 ) ( y 3 − y 1 ) b = ( x 3 − x 1 ) ( z 2 − z 1 ) − ( x 2 − x 1 ) ( z 3 − z 1 ) c = ( x 2 − x 1 ) ( y 3 − y 1 ) − ( x 3 − x 1 ) ( y 2 − y 1 ) d = − ( a x 1 + b y 1 + c z 1 ) \bm{\begin{cases} a = (y_2 - y_1)(z_3 - z_1) - (z_2 -z_1)(y_3 - y_1) \\ b = (x_3 - x_1)(z_2 - z_1) - (x_2 - x_1)(z_3 - z_1)\\ c = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) \\ d = -(ax_1 + by_1 + cz_1) \end{cases}} a=(y2y1)(z3z1)(z2z1)(y3y1)b=(x3x1)(z2z1)(x2x1)(z3z1)c=(x2x1)(y3y1)(x3x1)(y2y1)d=(ax1+by1+cz1)

截距式方程

x / a + y / b + z / c = 1 \displaystyle \bm{x/a+y/b+z/c=1} x/a+y/b+z/c=1
  其中a,b,c分别是该平面在x,y,z轴的截距(比如a是与x轴交点的横坐标)

一些应用

已知平面方程,找出平面上不共线的三个点

  已知平面的一般式方程 a x + b y + c z + d = 0 \bm{ax+by+cz+d=0} ax+by+cz+d=0,由于 a , b , c 不全为 0 \bm{a,b,c}不全为0 a,b,c不全为0,可以直接分类讨论:

   a ≠ 0 \bm{a \ne 0} a=0时,点 ( − d a , 0 , 0 ) , ( − c + d a , 0 , 1 ) , ( − b + d a , 1 , 0 ) \bm{(-\frac{d}{a},0,0),(-\frac{c+d}{a},0,1),(-\frac{b+d}{a},1,0)} (ad,0,0),(ac+d,0,1),(ab+d,1,0)在平面上且三点不共线;

   b ≠ 0 \bm{b \ne 0} b=0时,点 ( 0 , − d b , 0 ) , ( 0 , − c + d b , 1 ) , ( 1 , − a + d b , 0 ) \bm{(0,-\frac{d}{b},0),(0,-\frac{c+d}{b},1),(1,-\frac{a+d}{b},0)} (0,bd,0),(0,bc+d,1),(1,ba+d,0)在平面上且三点不共线;

   c ≠ 0 \bm{c \ne 0} c=0时,点 ( 0 , 0 , − d c ) , ( 0 , 1 , − b + d c ) , ( 1 , 0 , − a + d c ) \bm{(0,0, -\frac{d}{c}),(0,1,-\frac{b+d}{c}),(1,0,-\frac{a+d}{c})} (0,0,cd),(0,1,cb+d),(1,0,ca+d)在平面上且三点不共线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值