点法式方程
平面经过点
(
x
0
,
y
0
,
z
0
)
(x_0,y_0,z_0)
(x0,y0,z0)且法向量为
(
a
,
b
,
c
)
(a,b,c)
(a,b,c),则平面的点法式方程为:
a
(
x
−
x
0
)
+
b
(
y
−
y
0
)
+
c
(
z
−
z
0
)
=
0
\bm{a(x-x_0)+b(y-y_0)+c(z-z_0)=0}
a(x−x0)+b(y−y0)+c(z−z0)=0
一般式方程
平面的一般式方程:
a
x
+
b
y
+
c
z
+
d
=
0
\bm{ax+by+cz+d=0}
ax+by+cz+d=0
一般式方程是从点法式方程衍生的,因此
d
=
−
(
a
x
0
+
b
y
0
+
c
z
0
)
d=-(ax_0+by_0+cz_0)
d=−(ax0+by0+cz0)
注意
a
,
b
,
c
不全为
0
a,b,c不全为0
a,b,c不全为0,即
a
2
+
b
2
+
c
2
≠
0
a^2+b^2+c^2 \ne 0
a2+b2+c2=0
三点式方程
三个不共线的点确定一个平面,我们记这三个点为:
(
x
1
,
y
1
,
z
1
)
,
(
x
2
,
y
2
,
z
2
)
,
(
x
3
,
y
3
,
z
3
)
(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3)
(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),记平面上的任意一点
P
(
x
,
y
,
z
)
P(x,y,z)
P(x,y,z),那么这四个点会共面,就是说P与其他三个已知点中任意一个组成的向量、与已知三个点之中任意组成两个向量共面,共面意味着混合积为0,那么就有平面的三点式方程(这里还有其他等价写法):
∣
x
−
x
1
y
−
y
1
z
−
z
1
x
2
−
x
1
y
2
−
y
1
z
2
−
z
1
x
3
−
x
1
y
3
−
y
1
z
3
−
z
1
∣
=
0
\bm{\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0}
x−x1x2−x1x3−x1y−y1y2−y1y3−y1z−z1z2−z1z3−z1
=0
由此可求出一般式方程的系数:
{
a
=
(
y
2
−
y
1
)
(
z
3
−
z
1
)
−
(
z
2
−
z
1
)
(
y
3
−
y
1
)
b
=
(
x
3
−
x
1
)
(
z
2
−
z
1
)
−
(
x
2
−
x
1
)
(
z
3
−
z
1
)
c
=
(
x
2
−
x
1
)
(
y
3
−
y
1
)
−
(
x
3
−
x
1
)
(
y
2
−
y
1
)
d
=
−
(
a
x
1
+
b
y
1
+
c
z
1
)
\bm{\begin{cases} a = (y_2 - y_1)(z_3 - z_1) - (z_2 -z_1)(y_3 - y_1) \\ b = (x_3 - x_1)(z_2 - z_1) - (x_2 - x_1)(z_3 - z_1)\\ c = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1) \\ d = -(ax_1 + by_1 + cz_1) \end{cases}}
⎩
⎨
⎧a=(y2−y1)(z3−z1)−(z2−z1)(y3−y1)b=(x3−x1)(z2−z1)−(x2−x1)(z3−z1)c=(x2−x1)(y3−y1)−(x3−x1)(y2−y1)d=−(ax1+by1+cz1)
截距式方程
x
/
a
+
y
/
b
+
z
/
c
=
1
\displaystyle \bm{x/a+y/b+z/c=1}
x/a+y/b+z/c=1
其中a,b,c分别是该平面在x,y,z轴的截距(比如a是与x轴交点的横坐标)
一些应用
已知平面方程,找出平面上不共线的三个点
已知平面的一般式方程 a x + b y + c z + d = 0 \bm{ax+by+cz+d=0} ax+by+cz+d=0,由于 a , b , c 不全为 0 \bm{a,b,c}不全为0 a,b,c不全为0,可以直接分类讨论:
a ≠ 0 \bm{a \ne 0} a=0时,点 ( − d a , 0 , 0 ) , ( − c + d a , 0 , 1 ) , ( − b + d a , 1 , 0 ) \bm{(-\frac{d}{a},0,0),(-\frac{c+d}{a},0,1),(-\frac{b+d}{a},1,0)} (−ad,0,0),(−ac+d,0,1),(−ab+d,1,0)在平面上且三点不共线;
b ≠ 0 \bm{b \ne 0} b=0时,点 ( 0 , − d b , 0 ) , ( 0 , − c + d b , 1 ) , ( 1 , − a + d b , 0 ) \bm{(0,-\frac{d}{b},0),(0,-\frac{c+d}{b},1),(1,-\frac{a+d}{b},0)} (0,−bd,0),(0,−bc+d,1),(1,−ba+d,0)在平面上且三点不共线;
c ≠ 0 \bm{c \ne 0} c=0时,点 ( 0 , 0 , − d c ) , ( 0 , 1 , − b + d c ) , ( 1 , 0 , − a + d c ) \bm{(0,0, -\frac{d}{c}),(0,1,-\frac{b+d}{c}),(1,0,-\frac{a+d}{c})} (0,0,−cd),(0,1,−cb+d),(1,0,−ca+d)在平面上且三点不共线。