胸部CT影像分析(笔记)

这篇博客探讨了胸部CT图像的分析,尤其是使用CALIPER系统进行分割的问题。作者指出,传统的基于阈值或纹理特征的方法难以实现理想的分割效果,而深度学习在大量标注数据上训练后能有效进行肺部软组织分类。推荐了3D Slicer软件结合CIP和Slicer-AirwaySegmentation扩展包作为替代方案,并提供了相关下载链接和技术文档。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家看看这张医学图像是用什么算法实现分割的?欢迎积极交流讨论。 


分析:右边的结果及各个颜色的比例是左边CT(或者HRCT)图像经过CALIPER(one of CT scan scoring system)处理得到的。
CALIPER 官网:https://imbio.com/portfolio
下面是我对肺部加伪彩色增强的结果:


 
基于阈值或基于纹理特征都很难实现上述分割,经过多次测试、调研及讨论,得出结论:传统的方法是做不到的,应该是在大量标注数据上用深度学习进行训练,才能对肺部软组织进行分类。

CALIPER 或者 Visual CT Score 在网上没有下载到,可以试下免费的医学影像分析软件3D Slicer 外加两个肺部影像分析扩展包Chest Imaging Platform (CIP)和Slicer

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值