leetcode-代码随想录-动态规划-516最长回文子序列

题目

题目链接:516. 最长回文子序列 - 力扣(LeetCode)

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        
    }
};
思路

本题与647. 回文子串 - 力扣(LeetCode)
的区别:

  • 647题:

    • 统计所有回文子串数量。必须连续
    • dp类型:布尔值(是否回文)
    • 状态转移:首尾相同 + 内部回文
  • 本题:

    • 找最长回文子序列长度。可以不连续
    • dp类型:整数值(回文长度)
    • 状态转移:
      • 首尾相同 :内部长度 + 2
      • 首尾不同:max(去头,去尾)

1. DP数组含义

dp[i][j]:表示字符串 s 中从索引 i 到 j(左闭右闭 [i, j])的子串中最长回文子序列的长度。

2. 递推公式

情况1s[i] == s[j]

  • 首尾字符相同,可以加入回文序列
  • dp[i][j] = dp[i+1][j-1] + 2

情况2s[i] != s[j]

  • 首尾字符不同,有两种选择:
    1. 去掉 s[i]:dp[i+1][j]
    2. 去掉 s[j]:dp[i][j-1]
  • 取两者最大值:dp[i][j] = max(dp[i+1][j], dp[i][j-1])

image.png
image.png

3. DP数组初始化

  1. ij 相同:dp[i][i] = 1
  2. 其他情况dp[i][j]初始为0

4. 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1]。
image.png

从下到上遍历,从左向右遍历。

5. 打印DP数组

image.png

红色框即:dp[0][s.size() - 1]; 为最终结果。

#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <sstream>
#include <cmath>
using namespace std;

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        
        int m = s.size();
        vector<vector<int>> dp(m, vector<int>(m, 0));

        for(int i = 0; i < m; i++){
            dp[i][i] = 1;
        }

        for(int i = m - 1; i >= 0; i--){
            for(int j = i + 1; j < m; j++){
                if(s[i] == s[j]){
                    dp[i][j] = dp[i + 1][j - 1] + 2; 
                }else{
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                } 
            }
        }

        for(int i = 0; i < m; i++){
            for(int j = 0; j < m; j++){
                cout << dp[i][j] << " ";
            }
            cout << endl;
        }
        cout << endl;

        return dp[0][m - 1];
    }
};

int main(){

    string s;

    cout << "s: ";
    getline(cin, s);

    Solution obj;
    int res = obj.longestPalindromeSubseq(s);

    cout << "res: " << res << endl;
    
    return 0;
}
s: cbbd
1 1 2 2 
0 1 2 2
0 0 1 1
0 0 0 1

res: 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值