代码随想录|动态规划|53最长回文子序列

leetcode:516. 最长回文子序列 - 力扣(LeetCode)

题目

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000
  • s 只包含小写英文字母

思路

子序列!不是子串!

说明这里不需要连续!

例如bbbab

那么bbbb是回文子序列,长度为4.

动归五部曲

(1)dp含义

[i,j]范围内回文子序列的最大长度。

(2)递推公式

如果s[i] = s[j],就看里面的子序列,此时dp[i][j] = dp[i+1][j-1] + 2

如果s[i] ≠ s[j],就要考虑[i,j-1]  [i+1,j] 这两种情况,取最大的值。

(3)dp初始化

[i,i]是回文的,所以dp[i][i]=1,其他的就初始化为0,因为确实不知道到底是不是回文。

(4)遍历顺序

跟上面那道题的区别在于,可以从左边和下边去推出,所以遍历顺序是:

i-- j++,并且j此时不再是从i开始了,而是从i+1开始(因为j=i的情况,已经在初始化时候说过了)

代码如下:

class Solution
{
public:
    int longestPalindromeSubseq(string s)
    {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n, 0));
        for (int i = 0; i < n; i++)
        {
            dp[i][i] = 1;
        }
        for (int i = n - 1; i >= 0; i--)
        {
            for (int j = i + 1; j < n; j++)
            {
                if (s[i] == s[j])
                {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                }
                else
                {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][n - 1];
    }
};

总结

根据dp的定义,可以知道j一定是大于等于i的,而i=j的情况是我们在初始化定义的,所以地推的时候j要从i+1开始。

参考资料

 代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值