首先我们知道斐波纳契数列是:
1,2,3,5,8,13 ..........
这个数列中的一个数等于前面两个数的和, 我们可以用一个公式表示:
F(n) = F(n-1) + F(n-2)
有了这个概念我们可以很方便的写出代码:
现在我们看看是不是还能提高代码的效率
通过观察我们得到的数列,不难发现,所有的奇数和其实就是偶数的和,如果我们把其中所有的偶数提取出来,我们得到的数列是:
2,8,34,144...
发现规律了没有? 这个数列我们用公式 F(n) = F(n-1) *4 + F(n-2) 表示
现在修改我们的代码:
由于减少了循环次数, 这样效率应该有了提升
1,2,3,5,8,13 ..........
这个数列中的一个数等于前面两个数的和, 我们可以用一个公式表示:
F(n) = F(n-1) + F(n-2)
有了这个概念我们可以很方便的写出代码:
limit = 4000000
a = 0
b = 1
sum = a + b
while a + b <= limit:
c = a + b
a, b = b, c
if c % 2 != 0:
sum += c
print sum
现在我们看看是不是还能提高代码的效率
通过观察我们得到的数列,不难发现,所有的奇数和其实就是偶数的和,如果我们把其中所有的偶数提取出来,我们得到的数列是:
2,8,34,144...
发现规律了没有? 这个数列我们用公式 F(n) = F(n-1) *4 + F(n-2) 表示
现在修改我们的代码:
limit = 4000000
a = 0
b = 2
sum = a + b
while a + b <= limit:
c = a + b * 4
a, b = b, c
sum += c
print sum
由于减少了循环次数, 这样效率应该有了提升