找出1-4000000斐波纳契数列中的奇数和

首先我们知道斐波纳契数列是:
1,2,3,5,8,13 ..........
这个数列中的一个数等于前面两个数的和, 我们可以用一个公式表示:
F(n) = F(n-1) + F(n-2)

有了这个概念我们可以很方便的写出代码:

limit = 4000000
a = 0
b = 1
sum = a + b

while a + b <= limit:
c = a + b
a, b = b, c
if c % 2 != 0:
sum += c
print sum


现在我们看看是不是还能提高代码的效率
通过观察我们得到的数列,不难发现,所有的奇数和其实就是偶数的和,如果我们把其中所有的偶数提取出来,我们得到的数列是:
2,8,34,144...
发现规律了没有? 这个数列我们用公式 F(n) = F(n-1) *4 + F(n-2) 表示

现在修改我们的代码:

limit = 4000000
a = 0
b = 2
sum = a + b
while a + b <= limit:
c = a + b * 4
a, b = b, c
sum += c
print sum

由于减少了循环次数, 这样效率应该有了提升
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值