1、图像的形态学操作
包括图像的腐蚀、膨胀、开、闭、形态学梯度、顶帽、黑帽、分支主题、结构元素等操作。
具体概念参考:(41条消息) 图像处理-形态学处理_Good@dz的博客-CSDN博客_图像处理 形态学
1.1、膨胀
用3×3的核去扫描二值图像,当核与图像中的前景像素(值为1的像素)有交集时,则将二值图像中对应的卷积核中心位置的像素值置为1。
拓展:卷积核可以为任意形状(除1×1),且重置点可以选用卷积核中的任意位置,有‘交集‘就对重置点位置像素置1。
1.2、腐蚀
用3×3的核去扫描二值图像,仅当核的与前景像素有完全重合区域时,将二值图像中对应的卷积核中心位置的像素保留,其余情况下,将中心位置的像素置0。
拓展:卷积核可以为任意形状,且重置点可以选用卷积核中的任意位置。
膨胀与腐蚀的区别:膨胀只要有交集就触发,而腐蚀必须是重置点与前景像素有完全重合区域才保留。
1.3、开与闭
开:腐蚀再膨胀,去除微小干扰块。
闭:膨胀再腐蚀,填充闭合区域。
1.4、形态学梯度
基本梯度:膨胀图 - 腐蚀图
内梯度:原图 - 腐蚀图
外梯度:膨胀图 - 原图
这里opencv只能直接实现基本梯度,在使用API:morphologyEx 时,调用MORPH_GRADIENT方法即可。
内梯度、外梯度没有直接的API,一般通过已有API间接实现。
1.5、其余形态学操作
顶帽:原图 - 开操作后的图
黑帽:闭操作后的图 - 原图
注:顶帽和黑帽操作用于获取图像中的微小细节。
击中击不中: 通过特定模板,仅当输入的图像中,有与模板一模一样的块时,被击中的输入图像区域才会被保留。
使用API:morphologyEx 时,分别调用MORPH_TOPHAT 、MORPH_BLACKHAT、MORPH_HITMISS方法即可实现。
2、API
定义核形状
Mat cv::getStructuringElement ( int shape,
Size ksize,
Point anchor = Point(-1,-1)
)
shape——核的形状,可以定义矩形,十字形等形状,如下:
ksize——大小
anchor ——锚定点,即前文中的重置点。
注:当设计到保留横线或竖线时,可以将核定义成1×n或者n×1的形状,从而去除其余形状的线。
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 1), Point(-1, -1));
腐蚀:
void cv::erode ( InputArray src,
OutputArray dst,
InputArray kernel,
Point anchor = Point(-1,-1),
int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar & borderValue = morphologyDefaultBorderValue()
)
膨胀:
void cv::dilate ( InputArray src,
OutputArray dst,
InputArray kernel,
Point anchor = Point(-1,-1),
int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar & borderValue = morphologyDefaultBorderValue()
)
通用:
void cv::morphologyEx ( InputArray src,
OutputArray dst,
int op,
InputArray kernel,
Point anchor = Point(-1,-1),
int iterations = 1,
int borderType = BORDER_CONSTANT,
const Scalar & borderValue = morphologyDefaultBorderValue()
)
op ——形态学操作选用,如下:
iterations——重复腐蚀和膨胀的次数。
borderType ——边界类型
borderValue ——Border value in case of a constant border. The default value has a special meaning.
3、代码
3.1、腐蚀膨胀代码:
void erode_dilate(Mat& image)
{
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
Mat binary;
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
namedWindow("THRESH_OTSU", WINDOW_FREERATIO);
imshow("THRESH_OTSU", binary);
Mat dst1, dst2;
//定义核
int kernel_size = 5;
Mat kernel = getStructuringElement(MORPH_RECT, Size(kernel_size, kernel_size), Point(-1, -1));
//腐蚀
erode(binary, dst1, kernel);
namedWindow("erode", WINDOW_FREERATIO);
imshow("erode", dst1);
//膨胀
dilate(binary, dst2, kernel);
namedWindow("dilate", WINDOW_FREERATIO);
imshow("dilate", dst2);
}
3.2、开闭:
void QuickDemo::open_close(Mat& image)
{
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
Mat binary;
threshold(gray, binary, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);
namedWindow("THRESH_OTSU", WINDOW_FREERATIO);
imshow("THRESH_OTSU", binary);
Mat dst1, dst2;
//定义核
int kernel_size = 5;
Mat kernel = getStructuringElement(MORPH_RECT, Size(kernel_size, kernel_size), Point(-1, -1));
//开
morphologyEx(binary, dst1, MORPH_OPEN, kernel, Point(-1, -1), 1, 0);
namedWindow("MORPH_OPEN", WINDOW_FREERATIO);
imshow("MORPH_OPEN", dst1);
//闭、
morphologyEx(binary, dst2, MORPH_CLOSE, kernel, Point(-1, -1), 1, 0);
namedWindow("MORPH_CLOSE", WINDOW_FREERATIO);
imshow("MORPH_CLOSE", dst2);
}
3.3、形态学梯度
注:在边缘提取应用中,梯度边缘后,会再进行二值化,从而获取更好的边缘图像。
void QuickDemo::shape_gradient(Mat& image)
{
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
Mat g1, g2, g3;
Mat dst1, dst2;
int kernel_size = 7;
Mat kernel = getStructuringElement(MORPH_RECT, Size(kernel_size, kernel_size), Point(-1, -1));
//基本梯度
morphologyEx(gray, g1, MORPH_GRADIENT, kernel, Point(-1, -1), 1, 0);
//膨胀
morphologyEx(gray, dst1, MORPH_DILATE, kernel, Point(-1, -1), 1, 0);
//腐蚀
morphologyEx(gray, dst2, MORPH_ERODE, kernel, Point(-1, -1), 1, 0);
//外梯度
subtract(dst1, gray, g2);
//内梯度
subtract(gray, dst2, g3);
namedWindow("基本梯度", WINDOW_FREERATIO);
imshow("基本梯度", g1);
namedWindow("外梯度", WINDOW_FREERATIO);
imshow("外梯度", g2);
namedWindow("内梯度", WINDOW_FREERATIO);
imshow("内梯度", g3);
//最后再进行二值化,获取更好的边缘图像,选用基本梯度示例
Mat binary;
threshold(g1, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
namedWindow("二值化", WINDOW_FREERATIO);
imshow("二值化", binary);
}
3.4、其余形态学操作(顶帽、黑帽、击中击不中)
void QuickDemo::other_method(Mat& image)
{
Mat gray;
cvtColor(image, gray, COLOR_BGR2GRAY);
Mat binary;
threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU);
namedWindow("二值化", WINDOW_FREERATIO);
imshow("二值化", binary);
Mat dst1, dst2, dst3;
int kernel_size = 5;
Mat kernel_1 = getStructuringElement(MORPH_RECT, Size(kernel_size, kernel_size), Point(-1, -1));
//顶帽
morphologyEx(binary, dst1, MORPH_TOPHAT, kernel_1, Point(-1, -1), 1, 0);
namedWindow("顶帽", WINDOW_FREERATIO);
imshow("顶帽", dst1);
//黑帽
morphologyEx(binary, dst2, MORPH_BLACKHAT, kernel_1, Point(-1, -1), 1, 0);
namedWindow("黑帽", WINDOW_FREERATIO);
imshow("黑帽", dst2);
//击中击不中
Mat kernel_2 = getStructuringElement(MORPH_CROSS, Size(kernel_size, kernel_size), Point(-1, -1));
morphologyEx(binary, dst3, MORPH_HITMISS, kernel_2, Point(-1, -1), 1, 0);
namedWindow("击中击不中", WINDOW_FREERATIO);
imshow("击中击不中", dst3);
}