背景:腐蚀可以去除细小的噪声,但会将图像主要区域的面积缩小,造成主要区域形状发生改变;膨胀可以扩充区域的面积,填充较小的空洞,但会增加噪声的面积。所以根据二者的特性,将腐蚀和膨胀进行结合,以达到既去除噪声,又不缩小图像主要区域面积,既填充较小的空洞,又不增加噪声所占面积的目的。
API函数:morphologyEx(输入图像, 输出图像, 操作类型,结构元素,结构元素中心位置,处理次数,像素外推法标志,边界不变外推法时的边界值)
原图:
开运算
作用:去除噪声,消除较小的连通域,保留较大的连通域,在两个物体纤细连接处将物体分离,以较少改变物体面积,同时能够平滑连通域的边界。
开运算,先腐蚀,后膨胀。
闭运算
作用:去除小型空洞,平滑物体轮廓,连接两个临近的连通域。
闭运算,先膨胀,后腐蚀。
形态学梯度
作用:描述目标边界
基本梯度:原图膨胀与腐蚀的差值
内部梯度:原图与腐蚀后的差值
外部梯度:膨胀后图像与原图的差值
顶帽运算:原图与开运算结果的差值
背景:开运算会放大裂缝或局部低亮度区域
作用:分离比邻近点亮的一些斑块
黑帽运算:与顶帽运算相对应,是闭运算与原图之间的差值
作用:分离比邻近点暗的一些斑块
击中击不中变换:要求原图中存在与结构元素一模一样的结构
在使用矩形结构元素时,击中击不中变换与腐蚀结果相同
#include<opencv2/opencv.hpp>
#include<quickopencv.h>
#include<iostream>
#include<math.h>
#include <opencv2/imgproc.hpp>
#include<vector>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
//QuickDemo qd;
//qd.myFilter_demo(src);
//用于验证形态学应用的二值化矩阵
Mat src = (Mat_<uchar>(9, 12) << 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 0,
0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0,
0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0,
0, 255, 255, 255, 0, 255, 255, 255, 0, 0, 0, 0,
0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0,
0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 0,
0, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
namedWindow("src", WINDOW_NORMAL);
imshow("src", src);
//3*3矩形结构元素
Mat kernel = getStructuringElement(0, Size(3, 3));
//对二值化矩形进行形态学操作
Mat open, close, gradient, tophat, blackhat, hitmiss;
//对二值化矩形进行开运算
morphologyEx(src, open, MORPH_OPEN, kernel);
namedWindow("open", WINDOW_NORMAL);
imshow("open", open);
//对二值化矩形进行闭运算
morphologyEx(src, close, MORPH_CLOSE, kernel);
namedWindow("close", WINDOW_NORMAL);
imshow("close", close);
//对二值化矩形进行形态学梯度运算
morphologyEx(src, gradient, MORPH_GRADIENT, kernel);
namedWindow("gradient", WINDOW_NORMAL);
imshow("gradient", gradient);
//对二值化矩形进行顶帽运算
morphologyEx(src, tophat, MORPH_TOPHAT, kernel);
namedWindow("tophat", WINDOW_NORMAL);
imshow("tophat", tophat);
//对二值化矩形进行黑帽运算
morphologyEx(src, blackhat, MORPH_BLACKHAT, kernel);
namedWindow("blackhat", WINDOW_NORMAL);
imshow("blackhat", blackhat);
//对二值化矩形进行击中击不中运算
morphologyEx(src, hitmiss, MORPH_HITMISS, kernel);
namedWindow("hitmiss", WINDOW_NORMAL);
imshow("hitmiss", hitmiss);
//用图像验证形态学操作效果
Mat keys = imread("D:/images/dog.png", IMREAD_GRAYSCALE);
imshow("原图像", keys);
threshold(keys, keys, 80, 255, THRESH_BINARY); //二值化
imshow("二值化后图像", keys);
//5*5矩形结构元素
Mat kernel_key = getStructuringElement(0, Size(5, 5));
Mat open_key, close_key, gradient_key, tophat_key, blackhat_key, hitmiss_key;
//对图像进行开运算
morphologyEx(keys, open_key, MORPH_OPEN, kernel_key);
imshow("open_key", open_key);
//对图像进行闭运算
morphologyEx(keys, close_key, MORPH_CLOSE, kernel_key);
imshow("close_key", close_key);
//对图像进行形态学梯度运算
morphologyEx(keys, gradient_key, MORPH_GRADIENT, kernel_key);
imshow("gradient_key", gradient_key);
//对图像进行顶帽运算
morphologyEx(keys, tophat_key, MORPH_TOPHAT, kernel_key);
imshow("tophat_key", tophat_key);
//对图像进行黑帽运算
morphologyEx(keys, blackhat_key, MORPH_BLACKHAT, kernel_key);
imshow("blackhat_key", blackhat_key);
//对图像进行击中击不中运算
morphologyEx(keys, hitmiss_key, MORPH_HITMISS, kernel_key);
imshow("hitmiss_key", hitmiss_key);
waitKey(0);//此时图片显示时间为一直停留。(x)为x毫秒
//destroyAllWindows();
return 0;
}