Cuda官网网址: CUDA Toolkit Archive | NVIDIA Developer
这里我以ubuntu16.04安装cuda9.0为例
安装
sudo chmod a+x cuda_9.0.176_384.81_linux.run
sudo ./cuda_9.0.176_384.81_linux.run --no-opengl-libs
按空格键快速阅读
读完后accept
第二个是否安装nvidia显卡驱动,这个我已经安装过了,所以选择no
安装路径可以输入y默认路径,也可以像下图输入自己想安装的路径
Samples是一个安装后用于测试时候安装成功的例子,这里我选择no,安装之后可以用
nvcc -V来进行测试,不用安装这个例子
正在安装。。。
安装完成
安装好之后,在自己的用户文件夹下打开.bashrc文件(这是个隐藏文件)
在文件内容的最后加上,路径按照自己的
export PATH="/usr/local/cuda/cuda-9.0/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda/cuda-9.0/lib64:$LD_LIBRARY_PATH"
查看版本
接下来安装cudnn
官网地址:cuDNN Archive | NVIDIA Developer
下载对应cuda的版本,我的是cuda9.0
这里直接点进去会让你登录才可以下载,很麻烦,简单点,右键复制链接用迅雷下载,避开登录
下载完之后放在自己用户文件夹下进行解压
tar xvf cudnn-9.0-linux-x64-v7
解压之后会出现cuda文件
里面的内容如下
将这两个文件内容拷贝到之前安装cuda的文件夹下,我的如下
sudo cp /home/lhou/cudnn/cuda/include/* /usr/local/cuda/cuda-9.0/include
sudo cp /home/lhou/cudnn/cuda/lib64/* /usr/local/cuda/cuda-9.0/lib64
进入cuda目录下的lib64文件夹
删掉这俩
在cudnn文件夹里的下图拷贝到cuda的lib64里
切回cuda的lib64路径执行
sudo ln -s libcudnnn.so.7.0.5 libcudnn.so.7
此时再执行sudo ldconfig
补充: 参考:https://zhuanlan.zhihu.com/p/42439528
在安装好之后,出现tensorflow ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
主要是cuda的动态连接库的path的问题,pycharm找不到cuda相关库文件。直接在/etc/ld.so.conf 中将cuda安装文件夹下的的lib64和lib路径加进去,即可解决问题。
这里权限不够切换root用户处理
sudo echo "/usr/local/cuda/cuda-9.0/lib64/" >> /etc/ld.so.conf
sudo ldconfig
上图中在执行sudo ldconfig之后会出现