GNN学习6

基于图神经网络的图表征学习方法

引言

图表征学习要求在输入**节点属性、边和边的属性(如果有的话)**得到一个向量作为图的表征,基于图表征进一步的我们可以做图的预测。基于图同构网络(Graph Isomorphism Network, GIN)的图表征网络是当前最经典的图表征学习网络,我们将以它为例,通过该网络的实现、项目实践和理论分析,三个层面来学习基于图神经网络的图表征学习方法

提出图同构网络的论文:How Powerful are Graph Neural Networks?

基于图同构网络(GIN)的图表征网络的实现

基于图同构网络的图表征学习主要包含以下两个过程

  1. 首先计算得到节点表征;
  2. 其次对图上各个节点的表征做图池化(Graph Pooling),或称为图读出(Graph Readout),得到图的表征(Graph Representation)。

在此文中,我们将采用自顶向下的方式,来学习基于图同构模型(GIN)的图表征学习方法。我们首先关注如何基于节点表征计算得到图的表征,而忽略计算结点表征的方法

基于图同构网络的图表征模块(GINGraphRepr Module)

此模块首先采用GINNodeEmbedding模块对图上每一个节点做节点嵌入(Node Embedding),得到节点表征;然后对节点表征做图池化得到图的表征;最后用一层线性变换对图表征转换为对图的预测。代码实现如下:

先安装ogb包

!pip install ogb
Collecting ogb
  Downloading ogb-1.3.1-py3-none-any.whl (67 kB)
[K     |████████████████████████████████| 67 kB 125 kB/s eta 0:00:01
[?25hRequirement already satisfied: pandas>=0.24.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (1.1.3)
Requirement already satisfied: six>=1.12.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (1.15.0)
Requirement already satisfied: torch>=1.6.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (1.6.0)
Collecting outdated>=0.2.0
  Downloading outdated-0.2.1-py3-none-any.whl (7.5 kB)
Requirement already satisfied: tqdm>=4.29.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (4.49.0)
Requirement already satisfied: scikit-learn>=0.20.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (0.23.2)
Requirement already satisfied: urllib3>=1.24.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (1.25.11)
Requirement already satisfied: numpy>=1.16.0 in /data/anaconda3/lib/python3.7/site-packages (from ogb) (1.19.2)
Collecting littleutils
  Downloading littleutils-0.2.2.tar.gz (6.6 kB)
Requirement already satisfied: requests in /data/anaconda3/lib/python3.7/site-packages (from outdated>=0.2.0->ogb) (2.24.0)
Requirement already satisfied: pytz>=2017.2 in /data/anaconda3/lib/python3.7/site-packages (from pandas>=0.24.0->ogb) (2018.5)
Requirement already satisfied: python-dateutil>=2.7.3 in /data/anaconda3/lib/python3.7/site-packages (from pandas>=0.24.0->ogb) (2.7.3)
Requirement already satisfied: scipy>=0.19.1 in /data/anaconda3/lib/python3.7/site-packages (from scikit-learn>=0.20.0->ogb) (1.4.1)
Requirement already satisfied: joblib>=0.11 in /data/anaconda3/lib/python3.7/site-packages (from scikit-learn>=0.20.0->ogb) (0.14.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /data/anaconda3/lib/python3.7/site-packages (from scikit-learn>=0.20.0->ogb) (2.1.0)
Requirement already satisfied: future in /data/anaconda3/lib/python3.7/site-packages (from torch>=1.6.0->ogb) (0.18.2)
Requirement already satisfied: certifi>=2017.4.17 in /data/anaconda3/lib/python3.7/site-packages (from requests->outdated>=0.2.0->ogb) (2020.12.5)
Requirement already satisfied: idna<3,>=2.5 in /data/anaconda3/lib/python3.7/site-packages (from requests->outdated>=0.2.0->ogb) (2.7)
Requirement already satisfied: chardet<4,>=3.0.2 in /data/anaconda3/lib/python3.7/site-packages (from requests->outdated>=0.2.0->ogb) (3.0.4)
Building wheels for collected packages: littleutils
  Building wheel for littleutils (setup.py) ... [?25ldone
[?25h  Created wheel for littleutils: filename=littleutils-0.2.2-py3-none-any.whl size=7055 sha256=dc5563d859e187ab50538efc1a0664a721bd96ba8d3afaf2d92e288009ee12b6
  Stored in directory: /root/.cache/pip/wheels/d6/64/cd/32819b511a488e4993f2fab909a95330289c3f4e0f6ef4676d
Successfully built littleutils
Installing collected packages: littleutils, outdated, ogb
Successfully installed littleutils-0.2.2 ogb-1.3.1 outdated-0.2.1
[33mWARNING: Running pip as root will break packages and permissions. You should install packages reliably by using venv: https://pip.pypa.io/warnings/venv[0m
[33mWARNING: You are using pip version 21.1.2; however, version 21.1.3 is available.
You should consider upgrading via the '/data/anaconda3/bin/python -m pip install --upgrade pip' command.[0m

import torch
from torch import nn
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
from gin_node import GINNodeEmbedding

class GINGraphRepr(nn.Module):#图表征类

    def __init__(self, num_tasks=1, num_layers=5, emb_dim=300, residual=False, drop_ratio=0, JK="last", graph_pooling="sum"):
        """GIN Graph Pooling Module
        Args:
            num_tasks (int, optional): number of labels to be predicted. Defaults to 1 (控制了图表征的维度,dimension of graph representation).
            num_layers (int, optional): number of GINConv layers. Defaults to 5.
            emb_dim (int, optional): dimension of node embedding. Defaults to 300.
            residual (bool, optional): adding residual connection or not. Defaults to False.
            drop_ratio (float, optional): dropout rate. Defaults to 0.
            JK (str, optional): 可选的值为"last"和"sum"。选"last",只取最后一层的结点的嵌入,选"sum"对各层的结点的嵌入求和。Defaults to "last".
            graph_pooling (str, optional): pooling method of node embedding. 可选的值为"sum","mean","max","attention"和"set2set"。 Defaults to "sum".

        Out:
            graph representation
        """
        super(GINGraphPooling, self).__init__()

        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        self.emb_dim = emb_dim
        self.num_tasks = num_tasks

        if self.num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.gnn_node = GINNodeEmbedding(num_layers, emb_dim, JK=JK, drop_ratio=drop_ratio, residual=residual)

        # Pooling function to generate whole-graph embeddings
        if graph_pooling == "sum":
            self.pool = global_add_pool#对节点表征求和,使用模块torch_geometric.nn.glob.global_add_pool
        elif graph_pooling == "mean":
            self.pool = global_mean_pool#对节点表征求平均,使用模块torch_geometric.nn.glob.global_mean_pool
        elif graph_pooling == "max":
            self.pool = global_max_pool#对节点表征求最大值,使用模块torch_geometric.nn.glob.global_max_pool
        elif graph_pooling == "attention":#基于Attention对节点表征加权求和,使用模块 torch_geometric.nn.glob.GlobalAttention
            self.pool = GlobalAttention(gate_nn=nn.Sequential(
                nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, 1)))
        elif graph_pooling == "set2set":#另一种基于Attention对节点表征加权求和的方法,使用模块 torch_geometric.nn.glob.Set2Set
            self.pool = Set2Set(emb_dim, processing_steps=2)
        else:
            raise ValueError("Invalid graph pooling type.")

        if graph_pooling == "set2set":
            self.graph_pred_linear = nn.Linear(2*self.emb_dim, self.num_tasks)
        else:
            self.graph_pred_linear = nn.Linear(self.emb_dim, self.num_tasks)

    def forward(self, batched_data):
        h_node = self.gnn_node(batched_data)

        h_graph = self.pool(h_node, batched_data.batch)
        output = self.graph_pred_linear(h_graph)

        if self.training:
            return output
        else:
            # At inference time, relu is applied to output to ensure positivity
            # 因为预测目标的取值范围就在 (0, 50] 内
            return torch.clamp(output, min=0, max=50)




基于图同构网络的节点嵌入模块(GINNodeEmbedding Module)

此节点嵌入模块基于多层GINConv实现结点嵌入的计算。此处我们先忽略GINConv的实现。输入到此节点嵌入模块的节点属性为类别型向量,我们首先用AtomEncoder对其做嵌入得到第0层节点表征(稍后我们再对AtomEncoder做分析)。然后我们逐层计算节点表征,从第1层开始到第num_layers层,每一层节点表征的计算都以上一层的节点表征h_list[layer]、边edge_index和边的属性edge_attr为输入。需要注意的是,GINConv的层数越多,此节点嵌入模块的感受野(receptive field)越大结点i的表征最远能捕获到结点i的距离为num_layers的邻接节点的信息


import torch
from mol_encoder import AtomEncoder
from gin_conv import GINConv
import torch.nn.functional as F

# GNN to generate node embedding
class GINNodeEmbedding(torch.nn.Module):#节点嵌入
    """
    Output:
        node representations
    """

    def __init__(self, num_layers, emb_dim, drop_ratio=0.5, JK="last", residual=False):
        """GIN Node Embedding Module"""

        super(GINNodeEmbedding, self).__init__()
        self.num_layers = num_layers
        self.drop_ratio = drop_ratio
        self.JK = JK
        # add residual connection or not
        self.residual = residual

        if self.num_layers < 2:
            raise ValueError("Number of GNN layers must be greater than 1.")

        self.atom_encoder = AtomEncoder(emb_dim)

        # List of GNNs
        self.convs = torch.nn.ModuleList()
        self.batch_norms = torch.nn.ModuleList()

        for layer in range(num_layers):
            self.convs.append(GINConv(emb_dim))
            self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim))

    def forward(self, batched_data):
        x, edge_index, edge_attr = batched_data.x, batched_data.edge_index, batched_data.edge_attr

        # computing input node embedding
        h_list = [self.atom_encoder(x)]  # 先将类别型原子属性转化为原子表征
        for layer in range(self.num_layers):
            h = self.convs[layer](h_list[layer], edge_index, edge_attr)
            h = self.batch_norms[layer](h)
            if layer == self.num_layers - 1:
                # remove relu for the last layer
                h = F.dropout(h, self.drop_ratio, training=self.training)
            else:
                h = F.dropout(F.relu(h), self.drop_ratio, training=self.training)

            if self.residual:
                h += h_list[layer]

            h_list.append(h)

        # Different implementations of Jk-concat
        if self.JK == "last":
            node_representation = h_list[-1]
        elif self.JK == "sum":
            node_representation = 0
            for layer in range(self.num_layers + 1):
                node_representation += h_list[layer]

        return node_representation



接下来我们来学习图同构网络的关键组件GINConv

GINConv–图同构卷积层

图同构卷积层的数学定义如下:
x i ′ = h Θ ( ( 1 + ϵ ) ⋅ x i + ∑ j ∈ N ( i ) x j ) \mathbf{x}^{\prime}_i = h_{\mathbf{\Theta}} \left( (1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \right) xi=hΘ(1+ϵ)xi+jN(i)xj
PyG中已经实现了此模块,我们可以通过torch_geometric.nn.GINConv来使用PyG定义好的图同构卷积层,然而该实现不支持存在边属性的图。在这里我们自己自定义一个支持边属性的GINConv模块

由于输入的边属性为类别型,因此我们需要先将类别型边属性转换为边表征。我们定义的GINConv模块遵循“消息传递、消息聚合、消息更新”这一过程

  • 这一过程随着self.propagate()方法的调用开始执行,该函数接收edge_index, x, edge_attr此三个函数。edge_index是形状为[2,num_edges]的张量(tensor)。
  • 在消息传递过程中,此张量首先被按行拆分为x_ix_j张量,x_j表示了消息传递的源节点,x_i表示了消息传递的目标节点。
  • 接着message()方法被调用,此函数定义了从源节点传入到目标节点的消息,在这里要传递的消息是源节点表征与边表征之和的relu()的输出。我们在super(GINConv, self).__init__(aggr = "add")中定义了消息聚合方式为add,那么传入给任一个目标节点的所有消息被求和得到aggr_out,它还是目标节点的中间过程的信息。
  • 接着执行消息更新过程,我们的类GINConv继承了MessagePassing类,因此update()函数被调用。然而我们希望对节点做消息更新中加入目标节点自身的消息,因此在update函数中我们只简单返回输入的aggr_out
  • 然后在forward函数中我们执行out = self.mlp((1 + self.eps) *x + self.propagate(edge_index, x=x, edge_attr=edge_embedding))实现消息的更新。

import torch
from torch import nn
from torch_geometric.nn import MessagePassing
import torch.nn.functional as F
from ogb.graphproppred.mol_encoder import BondEncoder


### GIN convolution along the graph structure
class GINConv(MessagePassing):
    def __init__(self, emb_dim):
        '''
            emb_dim (int): node embedding dimensionality
        '''
        super(GINConv, self).__init__(aggr = "add")

        self.mlp = nn.Sequential(nn.Linear(emb_dim, emb_dim), nn.BatchNorm1d(emb_dim), nn.ReLU(), nn.Linear(emb_dim, emb_dim))
        self.eps = nn.Parameter(torch.Tensor([0]))
        self.bond_encoder = BondEncoder(emb_dim = emb_dim)

    def forward(self, x, edge_index, edge_attr):
        edge_embedding = self.bond_encoder(edge_attr) # 先将类别型边属性转换为边表征
        out = self.mlp((1 + self.eps) *x + self.propagate(edge_index, x=x, edge_attr=edge_embedding))
        return out

    def message(self, x_j, edge_attr):
        return F.relu(x_j + edge_attr)
        
    def update(self, aggr_out):
        return aggr_out




理论分析

动机(Motivation)

新的图神经网络的设计大多基于经验性的直觉、启发式的方法和实验性的试错。人们对图神经网络的特性和局限性了解甚少,对图神经网络的表征能力学习的正式分析也很有限。

贡献与结论

  1. (理论上)图神经网络在区分图结构方面最高能达到与WL Test一样的能力。
  2. 确定了邻接节点聚合方法和图池化方法的应具备的条件,在这些条件下,所产生的图神经网络能达到与WL Test一样的能力。
  3. 分析出过去流行的图神经网络变体(如GCN和GraphSAGE)无法区分一些结构的图。
  4. 开发了一个简单的图神经网络模型–图同构网络(Graph Isomorphism Network, GIN),并证明其分辨图的同构性的能力与表示图的能力与WL Test相当。

背景:Weisfeiler-Lehman Test (WL Test)

图同构性测试

两个图是同构的,意思是两个图拥有一样的拓扑结构,也就是说,我们可以通过重新标记节点从一个图转换到另外一个图。Weisfeiler-Lehman 图的同构性测试算法,简称WL Test,是一种用于测试两个图是否同构的算法。

WL Test 的一维形式,类似于图神经网络中的邻接节点聚合。WL Test 1)迭代地聚合节点及其邻接节点的标签,然后 2)将聚合的标签散列(hash)成新标签,该过程形式化为下方的公示,
L u h ← hash ⁡ ( L u h − 1 + ∑ v ∈ N ( U ) L v h − 1 ) L^{h}_{u} \leftarrow \operatorname{hash}\left(L^{h-1}_{u} + \sum_{v \in \mathcal{N}(U)} L^{h-1}_{v}\right) LuhhashLuh1+vN(U)Lvh1
在上方的公示中, L u h L^{h}_{u} Luh表示节点 u u u的第 h h h次迭代的标签,第 0 0 0次迭代的标签为节点原始标签。

在迭代过程中,发现两个图之间的节点的标签不同时,就可以确定这两个图是非同构的。需要注意的是节点标签可能的取值只能是有限个数。

WL测试不能保证对所有图都有效,特别是对于具有高度对称性的图,如链式图、完全图、环图和星图,它会判断错误。

Weisfeiler-Lehman Graph Kernels 方法提出用WL子树核衡量图之间相似性。该方法使用WL Test不同迭代中的节点标签计数作为图的表征向量,它具有与WL Test相同的判别能力。直观地说,在WL Test的第 k k k次迭代中,一个节点的标签代表了以该节点为根的高度为 k k k的子树结构。

Weisfeiler-Leman Test 算法举例说明:给定两个图 G G G G ′ G^{\prime} G,每个节点拥有标签(实际中,一些图没有节点标签,我们可以以节点的度作为标签)。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pgwao9cm-1625472756476)(images/image-20210602134450946-1622612692316.png)]

Weisfeiler-Leman Test 算法通过重复执行以下给节点打标签的过程来实现图是否同构的判断

  1. 聚合自身与邻接节点的标签得到一串字符串,自身标签与邻接节点的标签中间用,分隔,邻接节点的标签按升序排序。排序的原因在于要保证单射性,即保证输出的结果不因邻接节点的顺序改变而改变。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-86rJ2kxC-1625472756480)(images/image-20210602143017735.png)]

  1. 标签散列,即标签压缩,将较长的字符串映射到一个简短的标签。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sdOJxz7t-1625472756481)(images/image-20210602143718013.png)]

  1. 给节点重新打上标签。
    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yeDE7ank-1625472756483)(images/image-20210602143932099.png)]

每重复一次以上的过程,就完成一次节点自身标签与邻接节点标签的聚合。

当出现两个图相同节点标签的出现次数不一致时,即可判断两个图不相似。如果上述的步骤重复一定的次数后,没有发现有相同节点标签的出现次数不一致的情况,那么我们无法判断两个图是否同构。

当两个节点的 h h h层的标签一样时,表示分别以这两个节点为根节点的WL子树是一致的。WL子树与普通子树不同,WL子树包含重复的节点。下图展示了一棵以1节点为根节点高为2的WL子树。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LvxnHfzb-1625472756484)(images/image-20210602145047464.png)]

图相似性评估

此方法来自于Weisfeiler-Lehman Graph Kernels

WL Test 算法的一点局限性是,它只能判断两个图的相似性,无法衡量图之间的相似性。要衡量两个图的相似性,我们用WL Subtree Kernel方法。该方法的思想是用WL Test算法得到节点的多层的标签,然后我们可以分别统计图中各类标签出现的次数,存于一个向量,这个向量可以作为图的表征。两个图的这样的向量的内积,即可作为这两个图的相似性的估计,内积越大表示相似性越高。

image-20210602145242299

图同构网络模型的构建

能实现判断图同构性的图神经网络需要满足,只在两个节点自身标签一样且它们的邻接节点一样时,图神经网络将这两个节点映射到相同的表征,即映射是单射性的。可重复集合(Multisets)指的是元素可重复的集合,元素在集合中没有顺序关系。 **一个节点的所有邻接节点是一个可重复集合,一个节点可以有重复的邻接节点,邻接节点没有顺序关系。**因此GIN模型中生成节点表征的方法遵循WL Test算法更新节点标签的过程。

在生成节点的表征后仍需要执行图池化(或称为图读出)操作得到图表征,最简单的图读出操作是做求和。由于每一层的节点表征都可能是重要的,因此在图同构网络中,不同层的节点表征在求和后被拼接,其数学定义如下,
h G = CONCAT ( READOUT ( { h v ( k ) ∣ v ∈ G } ) ∣ k = 0 , 1 , ⋯   , K ) h_{G} = \text{CONCAT}(\text{READOUT}\left(\{h_{v}^{(k)}|v\in G\}\right)|k=0,1,\cdots, K) hG=CONCAT(READOUT({hv(k)vG})k=0,1,,K)
**采用拼接而不是相加的原因在于不同层节点的表征属于不同的特征空间。**未做严格的证明,这样得到的图的表示与WL Subtree Kernel得到的图的表征是等价的。

结语

在此篇文章中,我们学习了基于图同构网络(GIN)的图表征网络,为了得到图表征首先需要做节点表征,然后做图读出。GIN中节点表征的计算遵循WL Test算法中节点标签的更新方法,因此它的上界是WL Test算法。在图读出中,我们对所有的节点表征(加权,如果用Attention的话)求和,这会造成节点分布信息的丢失。

作业

  • 请画出下方图片中的6号、3号和5号节点的从1层到3层到WL子树。
    在这里插入图片描述
    在这里插入图片描述

参考资料

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python是一个功能强大且易于学习的编程语言,已成为深度学习和图神经网络(GNN)的主要编程语言之一。在Python上构建深度学习GNN,我们需要注意以下几点。 1.首先,我们需要确定要使用的框架。Python有许多深度学习框架,如TensorFlow, PyTorch和Keras等,都可用于构建GNN。每个框架都有其独特的优点和局限性,应根据项目的具体需求选择合适的框架。 2.其次,我们需要学习GNN的基础知识并了解其层次结构,从而选择不同层次的GNN算法来解决特定的任务。 3.接下来,我们需要理解节点嵌入、图嵌入、图卷积等关键概念,并掌握如何在Python中使用它们构建GNN模型。 4.此外,我们还需要了解如何从数据中提取相关特征,并使用这些特征指导GNN学习过程。 5.最后,我们需要进行模型的训练和测试,通过调整超参数来提高模型的性能。 总的来说,Python是构建深度学习GNN的理想语言,只要我们掌握了相关知识和技能,就可以轻松地构建高效的GNN模型来解决各种图数据相关的问题。 ### 回答2: Python是一种高级编程语言,广泛应用于各种计算机应用领域。在机器学习和人工智能领域,Python成为了最常用的编程语言之一。特别是在深度学习和图神经网络(GNN)领域,Python的使用频率更是最高的。 Python构建深度学习GNN可以使用多种流行的深度学习库和图计算库。其中,PyTorch是最重要的深度学习库之一,因为它提供了丰富的深度学习模块和工具,例如自动微分、神经网络层、优化算法等。PyTorch也支持图神经网络领域最常用的图神经网络计算库DGL(Deep Graph Library)。 使用PyTorch和DGL可以构建各种图神经网络模型。例如,可以使用GCN(Graph Convolutional Network)模型来对图进行分类、聚类和预测。GCN模型基于卷积神经网络的结构,但是使用由图定义的邻接矩阵和特征矩阵来替代卷积核。GCN模型在节点分类、推荐系统和社交网络分析等领域具有广泛的应用。 另一个重要的库是PyG(PyTorch Geometric)。PyG是基于PyTorch的图神经网络架构,提供了更加高级的图神经网络模型和操作。例如,可以使用GAT(Graph Attention Network)模型来学习图结构中的节点关系。GAT模型使用多头注意力机制,可以学习节点之间复杂的非线性关系。GAT模型特别适用于社交网络和知识图谱分析。 总之,Python构建深度学习GNN需要掌握多种深度学习库和图计算库,例如PyTorch、DGL、PyG等。使用这些工具可以构建各种高级的图神经网络模型,用于图结构数据的分析、预测和决策。 ### 回答3: 近年来,图神经网络(GNN)成为了深度学习领域中备受关注的一个新兴方向。Python 作为一种功能强大的编程语言,被广泛应用于数据科学、机器学习、人工智能等领域,自然也是构建 GNN 的首选语言之一。 首先,Python 社区中有很多为 GNN 提供了良好支持的开源库和框架。例如,PyTorch、TensorFlow 和 MXNet 等都提供了图神经网络相关的模块、函数和工具。此外,还有一些专门的 GNN 库,如 DGL、PyG、Spektral 等,它们能够更加简便地构建 GNN、优化模型结构和训练模型。 其次,Python 相比其他语言更加易于学习和使用。Python 的语法结构简单易懂,而且开源社区提供了丰富的教程和样例代码,能够快速帮助新手入门。此外,Python 也具有强大的数据处理和可视化能力,能够方便地展示数据、分析特征和构建模型,为 GNN 的研究提供了充足支持。 最后,Python 可以快速实现一些最新的 GNN 模型,其中最著名的是图卷积网络(GCN)。以 PyTorch 为例,在 PyTorch 中支持 GCN 的库有 PyG。它提供了很多现成的 GCN 模型,如 GAT、GraphSAGE 等,以及一些其他常用的图神经网络模型。 总之,Python 的开源库、易用性和快速实现 GNN 模型等优势,使 Python 成为了构建深度学习 GNN 最佳的选择之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值