公式
向量形式
x i ( k ) = ∑ j ∈ N ( i ) ∪ { i } 1 deg ( i ) ⋅ d e g ( j ) ⋅ ( Θ ⋅ x j ( k − 1 ) ) , \mathbf{x}_i^{(k)} = \sum_{j \in \mathcal{N}(i) \cup \{ i \}} \frac{1}{\sqrt{\deg(i)} \cdot \sqrt{deg(j)}} \cdot \left( \mathbf{\Theta} \cdot \mathbf{x}_j^{(k-1)} \right), xi(k)=j∈N(i)∪{
i}∑deg(i)⋅deg(j)1⋅(Θ⋅xj(k−1)),
其中, Θ \mathbf{\Theta} Θ是权重矩阵(即机器学习中要更新的参数), x i ( k ) \mathbf{x}_i^{(k)}