Datawhile_五月:异常检测(TASK02)
异常检测-基于统计学的方法
(作为刚入门的学者,基于统计方法的异常检测正在学习消化中,笔记有错误之处,后续会自行、以及读者提议不断修正,再次非常感谢Datawhale开源。)
一、方法概述
异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点,即利用统计学方法建立一个模型,然后考虑对象有多大可能符合该模型。
常用的方法包括:高斯分布的方法、非参数方法、基于角度的方法、HBOS方法;
检测方法特点:
(1)异常检测的统计学方法由数据学习模型,以区别正常的数据对象和异常点。使用统计学方法的一个优点是,异常检测可以是统计上无可非议的。当然,仅当对数据所做的统计假定满足实际约束时才为真。
(2)HBOS在全局异常检测问题上表现良好,但不能检测局部异常值。但是HBOS比标准算法快得多,尤其是在大数据集上。
二、基于高斯分布的异常检测方法
高斯分布方法属于参数异常检测方法;即:假定正常的数据对象被一个以ΘΘ为参数的参数分布产生,该参数分布的概率密度函数f(x,Θ)f(x,Θ)给出对象x被该分布产生的概率。该值越小,x越可能是异常点。
2.1 基于正态分布的一元异常点检测
假设数据为一元数据,且服从正态分布,然后可以由输入数据学习正态分布的参数,并把低概率的点识别为异常点。
假定输入数据集为x(1),x(2),...,x(m)x(1),x(2),...,x(m),数据集中的样本服从正态分布,即x(i)∼N(μ,σ2)x(i)∼N(μ,σ2),我们可以根据样本求出参数μ和σ。
μ=1m∑mi=1x(i)μ=1m∑i=1mx(i)
σ2=1m∑mi=1(x(i)−μ)2σ2=1m∑i=1m(x(i)−μ)2
求出参数之后,我们就可以根据概率密度函数计算数据点服从该分布的概率。正态分布的概率密度函数为
p(x)=12π√σexp(−(x−μ)22σ2)p(x)=12πσexp(−(x−μ)22σ2)
如果计算出来的概率低于阈值,就可以认为该数据点为异常点。
阈值是个经验值,可以选择在验证集上使得评估指标值最大(也就是效果最好)的阈值取值作为最终阈值。
例如常用的3sigma原则中,如果数据点超过范围(μ−3σ,μ+3σ)(μ−3σ,μ+3σ),那么这些点很有可能是异常点。
可视化:
箱线图对数据分布做了一个简单的统计可视化,利用数据集的上下四分位数(Q1和Q3)、中点等形成。异常点常被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的那些数据。
#画直方图
import matplotlib.pyplot as plt
import numpy as np
y = np.random.randn(50000) * 20 + 20
#随机生成数据的横坐标(在一定范围内)
x = np.random.normal(1, 0.02, size=len(y))
#plt.plot(x,y,'g.',alpha=0.4)
plt.boxplot(y)
plt.show()
直方图结果如下图所示:
中位数为23,75%线为74,25%为-24。
2.2 基于正态分布的多元异常点检测
涉及两个或多个属性或变量的数据称为多元数据;其核心思想是把多元异常点检测任务转换成一元异常点检测问题。例如基于正态分布的一元异常点检测扩充到多元情形时,可以求出每一维度的均值和标准差。对于第jj维:
μj=1m∑mi=1x(i)jμj=1m∑i=1mxj(i)
σ2j=1m∑mi=1(x(i)j−μj)2σj2=1m∑i=1m(xj(i)−μj)2
计算概率时的概率密度函数为
p(x)=∏nj=1p(xj;μj,σ2j)=∏nj=112π√σjexp(−(xj−μj)22σ2j)p(x)=∏j=1np(xj;μj,σj2)=∏j=1n12πσjexp(−(xj−μj)22σj2)
这是在各个维度的特征之间相互独立的情况下。如果特征之间有相关性,就要用到多元高斯分布了。
2.3 多个特征相关,且符合多元高斯分布
μ=1m∑mi=1x(i)μ=1m∑i=1mx(i)
∑=1m∑mi=1(x(i)−μ)(x(i)−μ)T∑=1m∑i=1m(x(i)−μ)(x(i)−μ)T
p(x)=1(2π)n2|Σ|12exp(−12(x−μ)TΣ−1(x−μ))p(x)=1(2π)n2|Σ|12exp(−12(x−μ)TΣ−1(x−μ))
ps:当多元高斯分布模型的协方差矩阵∑∑为对角矩阵,且对角线上的元素为各自一元高斯分布模型的方差时,二者是等价的。
3.3 使用混合参数分布
在许多情况下假定数据是由正态分布产生的。当实际数据很复杂时,这种假定过于简单,可以假定数据是被混合参数分布产生的。
二、非参数方法
在异常检测的非参数方法中,基本思想是“正常数据”的模型从输入数据学习,而不做假定先验。通常,非参数方法对数据做较少假定,因而在更多情况下都可以使用。
示例:使用直方图检测异常点的方法步骤如下:
直方图是一种频繁使用的非参数统计模型,可以用来检测异常点。该过程包括如下两步:
步骤1:构造直方图。使用输入数据(训练数据)构造一个直方图。该直方图可以是一元的,或者多元的(如果输入数据是多维的)。
尽管非参数方法并不假定任何先验统计模型,但是通常确实要求用户提供参数,以便由数据学习。例如,用户必须指定直方图的类型(等宽的或等深的)和其他参数(直方图中的箱数或每个箱的大小等)。与参数方法不同,这些参数并不指定数据分布的类型。
步骤2:检测异常点。为了确定一个对象是否是异常点,可以对照直方图检查它。在最简单的方法中,如果该对象落入直方图的一个箱中,则该对象被看作正常的,否则被认为是异常点。
对于更复杂的方法,可以使用直方图赋予每个对象一个异常点得分。例如令对象的异常点得分为该对象落入的箱的容积的倒数。
使用直方图作为异常点检测的非参数模型的一个缺点是,很难选择一个合适的箱尺寸。一方面,如果箱尺寸太小,则许多正常对象都会落入空的或稀疏的箱中,因而被误识别为异常点。另一方面,如果箱尺寸太大,则异常点对象可能渗入某些频繁的箱中,因而“假扮”成正常的。
三、HBOS算法
HBOS全名为:Histogram-based Outlier Score。它是一种单变量方法的组合,不能对特征之间的依赖关系进行建模,但是计算速度较快,对大数据集友好。其基本假设是数据集的每个维度相互独立。然后对每个维度进行区间(bin)划分,区间的密度越高,异常评分越低。
HBOS算法流程:
(1)为每个数据维度做出数据直方图。对分类数据统计每个值的频数并计算相对频率。对数值数据根据分布的不同采用以下两种方法:
-
静态宽度直方图:标准的直方图构建方法,在值范围内使用k个等宽箱。样本落入每个桶的频率(相对数量)作为密度(箱子高度)的估计。时间复杂度:O(n)O(n)
-
2.动态宽度直方图:首先对所有值进行排序,然后固定数量的NkNk个连续值装进一个箱里,其中N是总实例数,k是箱个数;直方图中的箱面积表示实例数。因为箱的宽度是由箱中第一个值和最后一个值决定的,所有箱的面积都一样,因此每一个箱的高度都是可计算的。这意味着跨度大的箱的高度低,即密度小,只有一种情况例外,超过k个数相等,此时允许在同一个箱里超过NkNk值。
时间复杂度:O(n×log(n))O(n×log(n))
(2)对每个维度都计算了一个独立的直方图,其中每个箱子的高度表示密度的估计。然后为了使得最大高度为1(确保了每个特征与异常值得分的权重相等),对直方图进行归一化处理。最后,每一个实例的HBOS值由以下公式计算:
HBOS(p)=∑i=0dlog(1histi(p))HBOS(p)=∑i=0dlog(1histi(p))
HBOS算法推导过程如下:
假设样本p第 i 个特征的概率密度为pi(p)pi(p) ,则p的概率密度可以计算为:
P(p)=P1(p)P2(p)⋯Pd(p)P(p)=P1(p)P2(p)⋯Pd(p)
两边取对数:
log(P(p))=log(P1(p)P2(p)⋯Pd(p))=∑i=1dlog(Pi(p))log(P(p))=log(P1(p)P2(p)⋯Pd(p))=∑i=1dlog(Pi(p))
概率密度越大,异常评分越小,为了方便评分,两边乘以“-1”:
−log(P(p))=−1∑i=1dlog(Pt(p))=∑i=1d1log(Pi(p))−log(P(p))=−1∑i=1dlog(Pt(p))=∑i=1d1log(Pi(p))
最后可得:
HBOS(p)=−log(P(p))=∑i=1d1log(Pi(p))
四、总结
本次实验是基于Datawhale开源社区发起的一个练习项目;日常的工作中,很少涉及单独做异常数据处理,借此本期训练营,将系统学习异常检测的方法。
作为刚入门的学者,基于统计方法的异常检测正在学习消化中,笔记有错误之处,后续会自行、以及读者提议不断修正,再次非常感谢Datawhale开源。
参考资料
[2] Goldstein, M. and Dengel, A., 2012. Histogram-based outlier score (hbos):A fast unsupervised anomaly detection algorithm . InKI-2012: Poster and Demo Track, pp.59-63.
[3] http://speech.ee.ntu.edu.tw/~tlkagk/courses.html
[4] http://cs229.stanford.edu/
[5] 《Outlier Analysis》——Charu C. Aggarwal