Vast.ai GPU服务器连接

本文详细介绍了在Vast.ai上配置GPU服务器的过程,包括添加支付方式、租用主机、配置SSH密钥认证及使用Jupyter Notebook进行文件传输的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Vast.ai GPU服务器连接

1. 首先需要在Billing下添加一张信用卡,然后冲$10刀

2. 选一台主机,然后RENT!

选一台主机

3. 成功以后可以在Instance里面看到

在这里插入图片描述

第一次创建Instance时需要配置SSH, 具体操作网站有提示,也可以参照如下步骤:

There is no ssh password, we use ssh key authentication. If ssh asks for a password, typically this means there is something wrong with the ssh key that you entered or your ssh client is misconfigured. On Ubuntu or Mac, first you need to generate an rsa ssh public/private keypair using the command:
ssh-keygen -t rsa
Next you may need to force the daemon to load the new private key:
ssh-add
这一步如果出现Permission Deny需要先启动SSH-AGENT:
eval 'ssh-agent'
然后再执行
ssh-add
Then get the contents of the public key with:
cat ~/.ssh/id_rsa.pub
Copy the entire output to your clipboard, then paste that into the “Change SSH Key” text box under console/account. The key text includes the opening “ssh-rsa” part and the ending “user@something” part. If you don’t copy the entire thing, it won’t work.
example SSH key text:

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDdxWwxwN5Lz7ubkMrxM5FCHhVzOnZuLt5FHi7J9pFXCJHfr96w+ccBOBo2rtCCTTRDLnJjIsMLgBcC3+jGyUhpUNMFRVIJ7MeqdEHgHFvAZV/uBkb7RjbyyFcb4MMSYNggUZkOUNoNgEa3aqtBSzt33bnuGqqszs9bfDCaPFtr9Wo0b8p4IYil/gfOYBkuSVwkqrBCWrg53/+T2rAk/02mWNHXyBktJAu1q7qTWcyO68JTDd0sa+4apSu+CsJMBJs3FcDDRAl3bcpiKwRbCkQ+N6sol4xDV3zQRebUc98CJPh04Gnc01W02lmdqGLlXG5U/rV9/JM7CawKiIz7aaqv bob@velocity

4. 上传文件或文件夹到服务器

Jupyter Notebook

直接用Upload上传即可

利用scp传输文件

1、从服务器下载文件
scp -P PORT root@IPADDR:/REMOTEDIR/file LOCAL_FILE
将服务器/REMOTEDIR目录下的file下载到本机LOCAL_FILE目录下
2、上传本地文件到服务器
scp -P PORT LOCAL_FILE root@IPADDR:/REMOTEDIR
将本机LOCAL_FILE上传到服务器

例如Connect提供如下信息:ssh -p 7417 root@52.204.230.7 -L 8080:localhost:8080
那么,PORT=7417,IPADDR=52.204.230.7

3、从服务器下载整个目录
scp -r username@servername:remote_dir/ /tmp/local_dir
例如:scp -r codinglog@192.168.0.101 /home/kimi/test /tmp/local_dir

4、上传目录到服务器
scp -r /tmp/local_dir username@servername:remote_dir
例如:
scp -P 22 -r test codinglog@192.168.0.101:/var/www/ 把当前目录下的test目录上传到服务器
的/var/www/ 目录

<think>好的,用户想了解如何租用GPU来训练YOLOv5模型。首先,我需要确定用户的需求,可能是刚开始接触深度学习项目,需要计算资源,但可能没有自己的GPU设备。用户可能关心租用GPU的步骤、平台选择、成本以及配置等问题。 接下来,我需要整理相关信息。租用GPU通常有几种方式:云服务提供商(如AWS、Google Cloud、阿里云)、专门的GPU租赁平台(如AutoDL、Featurize),以及学术资源(如学校或实验室的服务器)。用户可能更倾向于商业化的云服务,因为这些更容易获取。 然后,步骤方面,用户需要先选择合适的平台,注册账号,创建实例,配置环境,上传数据和代码,开始训练,最后保存结果。每个步骤中需要注意的关键点是什么?比如选择GPU型号时,YOLOv5对显存的要求,可能需要至少8GB的显存,RTX 3090或A100等。成本方面,按小时计费,控制预算的方法,比如选择按需实例或竞价实例。 环境配置部分,用户可能需要安装Python、PyTorch、YOLOv5的依赖库。是否需要提供具体的安装命令?比如pip install -r requirements.txt。数据准备方面,用户的数据集结构是否符合YOLOv5的要求,比如YOLO格式的标签文件。 训练命令也是一个重点,需要给出示例,如python train.py --img 640 --batch 16 --epochs 50 --data data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt。可能需要提醒用户根据GPU性能调整batch size,避免显存不足。 此外,注意事项部分,成本控制、数据备份、监控训练过程和模型保存都是关键点。用户可能会忽略这些细节,导致额外费用或数据丢失。 最后,是否需要推荐具体的平台?比如AutoDL对于国内用户可能更友好,而AWS或Google Cloud适合国际用户。还要提到测试和调试阶段可以使用较低配置,正式训练再升级GPU,这样节省成本。 需要确保回答结构清晰,分步骤说明,语言简洁,避免使用专业术语过多,让新手也能理解。同时检查LaTeX格式是否正确,所有行内公式用$...$,独立公式用$$...$$,虽然这个问题可能涉及较少的数学公式,但如果有提到参数或计算,需要正确应用格式。 可能需要提到分布式训练或混合精度训练以优化GPU使用,但用户可能暂时不需要这么高级的内容,保持基础即可。 总结下来,回答需要覆盖选择平台、租用步骤、环境配置、训练流程、注意事项,以及成本优化建议,用中文分点说明,帮助用户一步步完成GPU租用和模型训练。</think>### 租用GPU训练YOLOv5模型的步骤与建议 #### 1. **选择GPU租用平台** - **主流云服务商**:阿里云、腾讯云、AWS、Google Cloud等提供按需GPU实例。 - **专业GPU平台**:AutoDL、Featurize、Vast.ai等(性价比高,适合个人开发者)。 - **学术资源**:部分高校或实验室提供免费/低价GPU资源。 #### 2. **确定GPU型号与配置** - **显存要求**:YOLOv5训练建议至少 **8GB显存**(如RTX 3080、Tesla T4)。 - **推荐配置**: - 基础训练:RTX 3090(24GB显存) - 大规模数据:A100(40GB显存) - 根据预算选择 **按需计费** 或 **竞价实例**(价格更低,但可能被中断)。 #### 3. **租用GPU实例步骤** **以AutoDL平台为例**: 1. 注册账号并实名认证。 2. 进入“算力市场”,筛选GPU型号(如RTX 3090)。 3. 选择系统镜像(推荐PyTorch预装环境)。 4. 创建实例并按小时计费(约¥1.5~5/小时)。 #### 4. **配置训练环境** ```bash # 连接实例后,安装依赖 git clone https://github.com/ultralytics/yolov5 # 克隆YOLOv5代码 cd yolov5 pip install -r requirements.txt # 安装依赖库 ``` #### 5. **准备数据集** - 数据集格式需符合YOLOv5要求: ``` datasets/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` - 上传数据到实例(通过SFTP或平台提供的传输工具)。 #### 6. **启动训练** ```bash python train.py \ --img 640 \ # 输入图像尺寸 --batch 16 \ # 批大小(根据显存调整) --epochs 100 \ # 训练轮次 --data data.yaml \ # 数据集配置文件 --cfg yolov5s.yaml \ # 模型结构文件 --weights yolov5s.pt # 预训练权重 ``` #### 7. **监控与优化** - 使用TensorBoard监控损失和精度: ```bash tensorboard --logdir runs/train ``` - 调整学习率、数据增强参数以提升效果。 #### 8. **保存与下载结果** - 训练完成后,模型保存在 `runs/train/exp/weights/best.pt`。 - 通过平台提供的文件管理工具下载模型。 --- ### **注意事项** 1. **成本控制**: - 训练前预估时间,选择按需或竞价实例。 - 使用 `nvidia-smi` 监控GPU利用率,避免资源浪费。 2. **数据安全**: - 定期备份数据到本地或云存储(如OSS、Google Drive)。 3. **环境复用**: - 保存实例镜像,避免重复配置环境。 4. **混合精度训练**: - 添加 `--fp16` 参数加速训练(需GPU支持)。 --- ### **参考配置与价格(以AutoDL为例)** | GPU型号 | 显存 | 每小时价格 | 适合场景 | |------------|--------|------------|------------------| | RTX 3090 | 24GB | ¥2.3 | 中等规模训练 | | RTX 4090 | 24GB | ¥3.2 | 高分辨率图像 | | A100-SXM4 | 40GB | ¥8.0 | 大规模数据集 | 如需进一步帮助,可提供具体需求(如数据集大小、预算),我会推荐更详细的方案! 😊
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值