学习笔记---pd.concat()函数用法

concat()函数用法

当你需要把两个或多个 DataFrame(或 Series)合并成一个的时候,pd.concat() 函数就派上用场了。这个函数可以让你沿着行或列的方向将数据堆叠在一起。

举个例子,假设你有两个 DataFrame,一个包含了某个班级学生的成绩,另一个包含了同班级学生的考勤记录。你可以使用 pd.concat() 将这两个 DataFrame 沿着行的方向合并,以便得到一个包含了成绩和考勤记录的完整数据集。

基本用法如下:

import pandas as pd

# 假设 df1 和 df2 是两个 DataFrame
result = pd.concat([df1, df2])

这个例子中,pd.concat() 接收一个包含了你想要合并的 DataFrame 的列表作为参数,然后返回一个新的 DataFrame,其中包含了所有输入 DataFrame 的数据。默认情况下,合并是沿着行的方向进行的,也就是说会把数据堆叠在一起。

你也可以通过设置 axis 参数来改变合并的方向。例如,如果你想要把数据沿着列的方向合并,可以这样做

result = pd.concat([df1, df2], axis=1)

这样,df1df2 中的列会在水平方向上被堆叠在一起,形成一个新的 DataFrame。

pd.concat() 还有许多其他参数,可以用来控制合并的方式,例如 ignore_index 参数可以忽略原始索引,生成新的整数索引,keys 参数可以创建层次化索引等等。这个函数非常灵活,可以满足各种合并需求。

它的基本语法如下:

pd.concat(objs, axis=0, join='outer', 
ignore_index=False, keys=None, levels=None, 
names=None, verify_integrity=False, sort=False, copy=True)

参数说明:

  • objs:要连接的 Pandas 对象的序列(例如,DataFrame 或 Series)或者是一个字典。这是连接的主体部分。
  • axis:指定连接的轴。默认为 0,表示按行连接,如果设为 1,表示按列连接。
  • join:指定连接方式。可选值包择 'inner' 和 'outer',默认为 'outer'。'outer' 表示取连接对象的并集,'inner' 表示取连接对象的交集。
  • ignore_index:是否忽略索引。如果设为 True,将在连接时重新生成一个新的整数索引。默认为 False。
  • keys:用于在连接轴上创建层次化索引的值,可以是任意类型的可迭代对象,如列表、数组、Series、索引等。
  • levelsnames:当 keys 参数被使用时,用于指定创建的多重索引的层次级别和名称。
  • verify_integrity:检查新连接的轴是否重复。如果设为 True,将检查连接的结果是否会导致重复索引。默认为 False。
  • sort:在连接轴上对索引进行排序。默认为 False。
  • copy:是否复制连接的对象。默认为 True,表示复制对象;如果设为 False,表示不复制对象,这将提高性能,但在某些情况下可能导致结果不稳定。

这些参数提供了灵活的方式来控制连接操作的行为,以满足不同情况下的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘同学Python学习日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值