pandas实现数据concat拼接

pandas实现数据concat拼接

使用场景:批量拼接相同格式的excel、给DataFrame添加行、给DataFrame添加列等。

语法

使用某种方式合并方式(inner/outer)、沿着某个轴向(axis=0/1)、把多个Pandas对象(DataFrame/Seires)拼接成一个。

pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=None)

返回值

  • 当沿索引(axis=0)连接所有 Series 时,返回一个 Series。
  • 当 objs 中包含至少一个 DataFrame 时,返回一个 DataFrame。
  • 当沿列(axis=1)连接时,返回一个 DataFrame。

参数说明

  • objs:需要连接的对象(如 DataFrame 或 Series)的列表或字典。
  • axis:指定连接轴。{0/’index’, 1/’columns’}, 默认0。axis=0:沿行方向连接(垂直堆叠)。axis=1:沿列方向连接(水平堆叠)。
  • join:指定连接方式,{‘inner’, ‘outer’},默认为 ‘outer’。join=‘outer’:外连接,保留所有索引(默认)。join=‘inner’:内连接,只保留共有索引。
  • ignore_index:是否忽略原始索引并生成新的整数索引。bool,默认为 False。ignore_index=True:忽略原始索引,生成新的整数索引。ignore_index=False:保留原始索引。
  • keys:为连接后的对象添加外层索引(多层索引)。list 或 tuple。
  • levels:与 keys 参数配合使用,指定多层索引的具体层级。list 或 tuple。
  • names:为多层索引的层级命名。list 或 tuple。
  • verify_integrity:是否检查新索引是否有重复。bool,默认为 False。
  • sort:是否对非连接轴进行排序。bool,默认为 False。
  • copy:是否复制数据。bool,默认为 True。

示例:使用pandas.concat合并数据

第1个DataFrame:

import pandas as pd

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']})

查看数据:
在这里插入图片描述

第2个DataFrame:

df2 = pd.DataFrame({'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7'], 'E': ['E4', 'E5', 'E6', 'E7']})

查看结果:
在这里插入图片描述

默认的concat:参数axis=0,join=‘outer’,ignore_index=False

pd.concat([df1, df2])

合并后的结果:
在这里插入图片描述

使用ignore_index=True参数可以忽略原来的索引

pd.concat([df1, df2], ignore_index=True)

合并后的数据:
在这里插入图片描述

使用join='inner’参数过滤掉不匹配的列

pd.concat([df1, df2], ignore_index=True, join='inner')

合并后的数据:
在这里插入图片描述

使用axis=1相当于添加新列

添加一列Series

DataFrame:
在这里插入图片描述

再构造一个Series:

s1 = pd.Series(list(range(10, 14)), name='F')

在这里插入图片描述

按列合并:

pd.concat([df1, s1], axis=1)

合并后的结果:
在这里插入图片描述

添加多列Series

DataFrame:
在这里插入图片描述

第1个Series:
在这里插入图片描述

第2个Series:

s2 = df1.apply(lambda x : x['D'] + '_G', axis=1)
s2.name = 'G'

在这里插入图片描述

合并1个DataFrame和2个Series:

pd.concat([df1, s1, s2], axis=1)

合并后的结果:
在这里插入图片描述

concat的要合并的对象参数可以只包含Series列表

在这里插入图片描述

在这里插入图片描述

合并两个Series:

pd.concat([s1, s2], axis=1)

合并后的结果:
在这里插入图片描述

concat的要合并的对象参数DataFrame和Series顺序可以混合

要合并的DataFrame:
在这里插入图片描述

要合并的Series:
在这里插入图片描述

要合并的Series:
在这里插入图片描述

合并数据:

pd.concat([s1, df1, s2], axis=1)

合并后的结果:
在这里插入图片描述

一行一行给DataFrame添加数据

先生成一个空的DataFrame:

df = pd.DataFrame(columns=['S'])

在这里插入图片描述

利用concat可以接受对象列表的特点,进行拼接:

pd.concat([pd.DataFrame([i], columns=['S']) for i in range(6)], ignore_index=True)

拼接后的结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值