机器学习数学基础例题[二]:矩阵各类分解

1.请给出谱分解的概念及计算过程,并将矩阵A进行谱分解,同时用代码实现分解和结果展示。

1.谱分解是将一个对称矩阵(或厄米矩阵)表示为特征向量和对应的特征值的形式的分解。

谱分解定义

给定一个对称矩阵 A,谱分解将其表示为特征值 λ1, λ2, ..., λn 和相应的单位特征向量 v1, v2, ..., vn 的乘积形式,即  A = v \Lambda _{}^{_V{T}}

,其中 V 是由特征向量组成的正交矩阵,Λ 是由特征值构成的对角矩阵。

算法思想:

1.计算对称矩阵 A 的特征值和特征向量。

2.将特征值按从大到小的顺序排列,并将对应的特征向量按相同顺序排列成一个正交矩阵 Q。

3.构建对角矩阵 Λ,其中对角线上的元素是特征值。

算法伪码:

输入:对称矩阵 A

1.计算特征值和特征向量:eigenvalues, eigenvectors = 求解(A)

2.排序特征值和特征向量:idx = eigenvalues.argsort()[::-1], eigenvalues = eigenvalues[idx], eigenvectors = eigenvectors[:, idx]

3.构建对角矩阵:Lambda = 对角矩阵(eigenvalues)

4.输出:Lambda, eigenvectors

算法实现(Python代码):

pythonCopy Code

import numpy as np

def spectral_decomposition(A):

    # 计算特征值和特征向量

    eigenvalues, eigenvectors = np.linalg.eig(A)

    # 排序特征值和特征向量

    idx = eigenvalues.argsort()[::-1]

    eigenvalues = eigenvalues[idx]

    eigenvectors = eigenvectors[:, idx]

    # 构建对角矩阵

    Lambda = np.diag(eigenvalues)

    return Lambda, eigenvectors

# 示例矩阵 A

A = np.array([[5, 1, 0],

              [1, 3, 4],

              [0, 4, 2]])

# 调用谱分解函数

Lambda, eigenvectors = spectral_decomposition(A)

# 输出结果

print("特征值:")

print(Lambda)

print("特征向量:")

print(eigenvectors)

2.请给出Cholesky 分解的概念及计算过程,并将矩阵A进行Cholesky 分解,同时用代码实现分解和结果展示。

2.Cholesky 分解是将一个对称正定矩阵表示为下三角矩阵 L 和其转置的乘积的形式的分解。

Cholesky 分解的定义:

给定一个对称正定矩阵 A,Cholesky 分解将其表示为下三角矩阵 L 和其转置的乘积的形式,即

A = LL^{T}

Cholesky 分解的算法思想:

Cholesky 分解的思想是通过一系列的计算步骤将对称正定矩阵 A 分解为下三角矩阵 L 和其转置的乘积。具体来说,算法从矩阵的第一行开始,逐行计算并填充下三角矩阵 L 的元素,直到得到完整的下三角矩阵 L。

Cholesky 分解的算法伪码:

输入:对称正定矩阵 A

初始化 L 为零矩阵

对于每一行 i = 1 到 n:

    对于每一列 j = 1 到 i:

        如果 i = j:

            计算 L[i][j] = sqrt(A[i][i] - sum(L[i][k]^2 for k = 1 to j-1))

        否则:

            计算 L[i][j] = (A[i][j] - sum(L[i][k]*L[j][k] for k = 1 to j-1)) / L[j][j]

输出:下三角矩阵 L

Cholesky 分解的算法实现(Python代码):

import numpy as np

def cholesky_decomposition(A):

    n = A.shape[0]

    L = np.zeros_like(A)

    for i in range(n):

        for j in range(i+1):

            if i == j:

                L[i][j] = np.sqrt(A[i][i] - np.sum(L[i][k] ** 2 for k in range(j)))

            else:

                L[i][j] = (A[i][j] - np.sum(L[i][k] * L[j][k] for k in range(j))) / L[j][j]

    return L

# 示例矩阵 A

A = np.array([[4, -1, -1],

              [-1, 4.25, 2.75],

              [-1, 2.75, 3.5]])

# 调用 Cholesky 分解函数

L = cholesky_decomposition(A)

# 输出结果

print("下三角矩阵 L:")

print(L)

3.如何通过奇异值分解实现图像压缩、去噪

  1. 奇异值分解(Singular Value Decomposition,简称SVD)是一种将矩阵分解为三个矩阵乘积的方法。

其定义如下:

给定一个 m×n 的实数矩阵 A,SVD 将其表示为以下形式:
A = U \sum V^{T}

,其中 U 是一个 m×m 的正交矩阵,Σ 是一个 m×n 的对角矩阵,V 是一个 n×n 的正交矩阵。Σ 对角线上的元素称为奇异值,通常按照从大到小的顺序排列。

奇异值分解的算法思想如下

对矩阵 A 计算 A^T × A 得到一个对称矩阵 B。

对 B 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为 A^T × A 的奇异值,特征向量构成 V 矩阵。

对 A × A^T 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为 A × A^T 的奇异值,特征向量构成 U 矩阵。

根据奇异值构建对角矩阵 Σ。

奇异值分解的伪码如下:

输入:m×n 矩阵 A

1.计算 A^T × A 得到矩阵 B。

2.对 B 进行特征值分解,得到特征值和特征向量。

3.特征值的平方根即为 A^T × A 的奇异值,特征向量构成 V 矩阵。

4.计算 A × A^T 得到矩阵 C。

5.对 C 进行特征值分解,得到特征值和特征向量。

6.特征值的平方根即为 A × A^T 的奇异值,特征向量构成 U 矩阵。

7.根据奇异值构建对角矩阵 Σ。

输出:U、Σ、V

Python示例代码:

import numpy as np

def svd(A):

    U, sigma, VT = np.linalg.svd(A)

    return U, sigma, VT

# 示例用法

A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

U, sigma, VT = svd(A)

print("U:")

print(U)

print("Sigma:")

print(sigma)

print("VT:")

print(VT)

4.什么是奇异值分解?请给出奇异值分解的几何解释。奇异值分解如何计算?

  1. 奇异值分解(Singular Value Decomposition,简称SVD)是一种将矩阵分解为三个矩阵乘积的方法。

其定义如下:

给定一个 m×n 的实数矩阵 A,SVD 将其表示为以下形式:A = U \sum V^{T}

,其中 U 是一个 m×m 的正交矩阵,Σ 是一个 m×n 的对角矩阵,V 是一个 n×n 的正交矩阵。Σ 对角线上的元素称为奇异值,通常按照从大到小的顺序排列。

奇异值分解的算法思想如下

对矩阵 A 计算 A^{T} * A  得到一个对称矩阵 B。

对 B 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为  A^{T} * A的奇异值,特征向量构成 V 矩阵。

对 A * A^{T} 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为 A * A^{T}的奇异值,特征向量构成 U 矩阵。

根据奇异值构建对角矩阵 Σ。

几何上,奇异值分解可以理解为对线性变换的分解。假设 A 是一个 m×n 的矩阵,A 将 n 维空间中的向量映射到 m 维空间中。那么 U 和 V 可以看作是两个正交变换矩阵,分别描述了输入空间和输出空间的旋转和缩放变换。Σ 是一个对角矩阵,对角线上的元素称为奇异值,表示了输入空间中每个方向上的缩放因子。

奇异值分解的计算过程如下:

对矩阵 A 的转置乘以 A,得到一个对称半正定矩阵 B =  A^{T} * A

对 B 进行特征值分解,得到特征值和特征向量。特征向量构成了 U 矩阵。

对矩阵 A 乘以 A 的转置,得到一个对称半正定矩阵 C = A * A^{T}.

对 C 进行特征值分解,得到特征值和特征向量。特征向量构成了 V 矩阵。

对特征值按照大小进行排序,得到对角矩阵 Σ。

根据变换关系 A = U \sum V^{T},得到奇异值分解的结果。

奇异值分解在数据压缩、图像处理、推荐系统等领域有广泛应用,它可以提取出矩阵的主要特征,并降低数据的维度,从而实现数据的降噪和信息提取。

奇异值分解的伪码如下:

输入:m×n 矩阵 A

1.计算 A^{T} * A 得到矩阵 B。

2.对 B 进行特征值分解,得到特征值和特征向量。

3.特征值的平方根即为  A^{T} * A的奇异值,特征向量构成 V 矩阵。

4.计算 A * A^{T} 得到矩阵 C。

5.对 C 进行特征值分解,得到特征值和特征向量。

6.特征值的平方根即为 A * A^{T}的奇异值,特征向量构成 U 矩阵。

7.根据奇异值构建对角矩阵 Σ。

输出:U、Σ、V

简单的Python示例代码:

import numpy as np

def svd(A):

    U, sigma, VT = np.linalg.svd(A)

    return U, sigma, VT

# 示例用法

A = np.array([[2, 3, 4], [4, 5, 6], [7, 8, 9]])

U, sigma, VT = svd(A)

print("U:")

print(U)

print("Sigma:")

print(sigma)

print("VT:")

print(VT)

5.什么是紧奇异值分解和截断奇异值分解?截断奇异值分解如何计算?

紧奇异值分解定义:

紧奇异值分解(Compact Singular Value Decomposition,简称CSVD)是奇异值分解的一种特殊形式,用于对矩阵进行低秩近似。它将一个矩阵分解为三个部分的乘积:A \approx U \sum V^{T}

,其中 A 是待分解的矩阵,U 和 V 是正交矩阵,Σ 是对角矩阵。

截断奇异值分解定义:

截断奇异值分解(Truncated Singular Value Decomposition,简称TSVD)是在紧奇异值分解的基础上进一步截断奇异值,以实现更高程度的降维。通过保留最大的 k 个奇异值,将矩阵 A 近似表示为 A \approx U \sum V^{T},其中 U 和 V 是正交矩阵,Σ 是对角矩阵,只有前 k 个奇异值不为零,其余奇异值被截断为零。

截断奇异值分解的计算过程如下:

对矩阵 A 的转置乘以 A,得到一个对称半正定矩阵 B = A^{T} * A

对 B 进行特征值分解,得到特征值和特征向量。特征向量构成了 U 矩阵。

对矩阵 A 乘以 A 的转置,得到一个对称半正定矩阵 C = A * A^{T}

对 C 进行特征值分解,得到特征值和特征向量。特征向量构成了 V 矩阵。

对特征值按照大小进行排序,得到对角矩阵 Σ。

选择前 k 个最大的奇异值,将其余奇异值截断为零,得到截断后的对角矩阵 Σ'。

根据变换关系A \approx U \sum V^{T} ,得到截断奇异值分解的结果。

通过截断奇异值,可以实现对矩阵的低秩近似,从而实现数据的降维和压缩。选择合适的截断参数 k 可以在保留较高的信息量的同时减少计算和存储的开销。

紧奇异值分解算法思想

对于 m 行 n 列的矩阵 A,计算 A * A^{T}A^{T} * A  的特征值和特征向量。

根据特征值的大小,将特征向量按照从大到小排列,得到 U 和 V^{​{T}}。U 是 A * A^{T}

 的特征向量构成的正交矩阵,V^{​{T}}A^{T} * A的特征向量构成的正交矩阵的转置。

将特征值按照从大到小排列,得到 s,构建对角矩阵 Sigma。Sigma 是一个 m 行 n 列的对角矩阵,对角线上的元素是特征值的平方根。

设定一个截断参数 k,将 Sigma 的后面的 m-k 行和 n-k 列置零,得到截断后的对角矩阵 Sigma_k。

得到矩阵 A 的紧奇异值分解:A \approx Uk \sum k VK^{T}

其中,Uk 是由 Sigma_k 的前 k 列构成的 m 行 k 列的正交矩阵,VK^{T}是由 Sigma_k 的前 k 行构成的 k 行 n 列的正交矩阵的转置。

截断奇异值分解的算法思想如下

对于 m 行 n 列的矩阵 A,计算 A * A^{T}A^{T} * A 的特征值和特征向量。

根据特征值的大小,将特征向量按照从大到小排列,得到 U 和 V^T。U 是 A * A^{T}

 的特征向量构成的正交矩阵,V^T 是 A^{T} * A的特征向量构成的正交矩阵的转置。

将特征值按照从大到小排列,得到 s,构建对角矩阵 Sigma。Sigma 是一个 m 行 n 列的对角矩阵,对角线上的元素是特征值的平方根。

设定一个截断参数 k,保留 Sigma 的前 k 个对角线元素,其余元素置零,得到截断后的对角矩阵 Sigma_k。

得到矩阵 A 的截断奇异值分解:A=V\Lambda V^{T}

其中,U_k 是由 Sigma_k 的前 k 列构成的 m 行 k 列的正交矩阵,V_k^T 是由 Sigma_k 的前 k 行构成的 k 行 n 列的正交矩阵的转置

紧奇异值代码实现

import numpy as np

# SVD

def svd_decomposition(matrix):

    U, s, Vt = np.linalg.svd(matrix)

    return U, s, Vt

# 示例用法

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

U, s, Vt = svd_decomposition(matrix)

print("U:")

print(U)

print("s:")

print(s)

print("Vt:")

print(Vt)

截断奇异值代码实现

import numpy as np

# TSVD

def tsvd_decomposition(matrix, k):

    U, s, Vt = np.linalg.svd(matrix)

    Uk = U[:, :k]

    sk = np.diag(s[:k])

    Vtk = Vt[:k, :]

    return Uk, sk, Vtk

# 示例用法

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

k = 2

Uk, sk, Vtk = tsvd_decomposition(matrix, k)

print("Uk:")

print(Uk)

print("sk:")

print(sk)

print("Vtk:")

print(Vtk)

6求矩阵A的奇异值分解,并用源码实现和展示结果。

其定义如下:

给定一个 m×n 的实数矩阵 A,SVD 将其表示为以下形式:A = UΣV^T,其中 U 是一个 m×m 的正交矩阵,Σ 是一个 m×n 的对角矩阵,V 是一个 n×n 的正交矩阵。Σ 对角线上的元素称为奇异值,通常按照从大到小的顺序排列。

奇异值分解的算法思想如下

对矩阵 A 计算  A^{T} * A 得到一个对称矩阵 B。

对 B 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为A^{T} * A 的奇异值,特征向量构成 V 矩阵。

对 A * A^{T}进行特征值分解,得到特征值和特征向量。

特征值的平方根即为 A * A^{T}的奇异值,特征向量构成 U 矩阵。

根据奇异值构建对角矩阵 Σ。

几何上,奇异值分解可以理解为对线性变换的分解。假设 A 是一个 m×n 的矩阵,A 将 n 维空间中的向量映射到 m 维空间中。那么 U 和 V 可以看作是两个正交变换矩阵,分别描述了输入空间和输出空间的旋转和缩放变换。Σ 是一个对角矩阵,对角线上的元素称为奇异值,表示了输入空间中每个方向上的缩放因子。

奇异值分解的计算过程如下:

对矩阵 A 的转置乘以 A,得到一个对称半正定矩阵 B = A^{T} * A

对 B 进行特征值分解,得到特征值和特征向量。特征向量构成了 U 矩阵。

对矩阵 A 乘以 A 的转置,得到一个对称半正定矩阵 C = A * A^{T}

对 C 进行特征值分解,得到特征值和特征向量。特征向量构成了 V 矩阵。

对特征值按照大小进行排序,得到对角矩阵 Σ。

根据变换关系 A = U \sum V^{T},得到奇异值分解的结果。

奇异值分解在数据压缩、图像处理、推荐系统等领域有广泛应用,它可以提取出矩阵的主要特征,并降低数据的维度,从而实现数据的降噪和信息提取。

奇异值分解的伪码如下:

输入:m×n 矩阵 A

计算 A^{T} * A得到矩阵 B。

对 B 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为 A^{T} * A 的奇异值,特征向量构成 V 矩阵。

计算 A * A^{T}得到矩阵 C。

对 C 进行特征值分解,得到特征值和特征向量。

特征值的平方根即为 A * A^{T}的奇异值,特征向量构成 U 矩阵。

根据奇异值构建对角矩阵 Σ。

输出:U、Σ、V

示例代码如下

import numpy as np

# 定义一个四行三列的矩阵

matrix = np.array([[1, 2, 3],

                   [4, 5, 6],

                   [7, 8, 9],

                   [10, 11, 12]])

# 使用numpy的奇异值分解函数进行分解

U, s, Vt = np.linalg.svd(matrix)

# 构建对角矩阵

Sigma = np.zeros((matrix.shape[0], matrix.shape[1]))

Sigma[:matrix.shape[1], :matrix.shape[1]] = np.diag(s)

# 打印结果

print("U:")

print(U)

print("Sigma:")

print(Sigma)

print("V^T:")

print(Vt)

7.求矩阵A的奇异值分解,并用源码实现和展示结果。

定义:奇异值分解(Singular Value Decomposition,简称SVD)是将一个矩阵分解为三个矩阵的乘积的过程,其中包括一个左奇异向量矩阵、一个对角奇异值矩阵和一个右奇异向量矩阵。

思想:

对矩阵 A 的转置矩阵A^{T}和矩阵 A 的乘积A^{T} @ A 进行特征值分解,得到特征向量矩阵 V 和特征值矩阵 Sigma^2。

对矩阵 A 的乘积 A @

伪代码:

输入:矩阵 A(m x n),其中 m 是行数,n 是列数。

计算矩阵 A 的转置矩阵 AT。

计算矩阵 A 与其转置矩阵的乘积 C = A x A^{T}

对矩阵 C 进行特征值分解,得到特征值和对应的特征向量。

将特征值按降序排列,得到矩阵 Σ。

取矩阵 Σ 的前 r 个特征值,构造对角矩阵 Σr。

取特征向量矩阵中与前 r 个特征值对应的特征向量,构造矩阵 U。

计算矩阵 V = A^{T} x U x Σr⁻¹,其中 Σr⁻¹ 是 Σr 的逆矩阵。

输出矩阵 U、Σr 和 V。

奇异值分解的代码示例:

import numpy as np

# 定义矩阵 A

A = np.array([[3, 1],

           [2, 1]])

# 奇异值分解

U, Sigma, VT = np.linalg.svd(A)

print("奇异值分解结果:")

print("U =")

print(U)

print("Sigma =")

print(np.diag(Sigma))

print("V^T =")

print(VT)

8.求矩阵A的紧奇异值分解,并用源码实现和展示结果。

8.紧奇异值分解(Compact Singular Value Decomposition,简称CSVD)是奇异值分解(SVD)的一种特殊形式,在紧奇异值分解中,左奇异向量矩阵和右奇异向量矩阵都是方阵,并且奇异值矩阵只包含非零奇异值。

CSVD 的计算过程如下:

对矩阵 A 进行奇异值分解,得到左奇异向量矩阵 U、奇异值矩阵 Sigma 和右奇异向量矩阵 V^{T}

令 r 为 Sigma 矩阵中非零奇异值的个数,取 U 的前 r 列得到紧奇异向量矩阵 U_r,取V^{T} 的前 r 行得到紧奇异向量矩阵 V-R^{T}

,取 Sigma 的前 r 个非零奇异值得到紧奇异值矩阵 Sigma_r。

计算紧奇异值分解后的矩阵 A_r = U_r @ Sigma_r @V-R^{T}

算法伪码:

输入:矩阵A,降维维度k

输出:降维后的矩阵A'

对矩阵A进行奇异值分解得到A = UΣV^T。

令Σ'为Σ的前k个对角元素,构建对角矩阵。

令U'为U的前k列,V'为V的前k列。

计算A = UΣV^T。

返回A'作为输出结果。

紧奇异值分解的代码示例:

import numpy as np

# 定义矩阵 A

A = np.array([[1, 1, 1],

           [0, 2, 0],

           [1, 2, 1],

           [0, 0, 1]])

# 奇异值分解

U, Sigma, VT = np.linalg.svd(A)

# 紧奇异值分解

r = np.count_nonzero(Sigma)

U_r = U[:, :r]

Sigma_r = np.diag(Sigma[:r])

VT_r = VT[:r, :]

A_r = U_r @ Sigma_r @ VT_r

print("紧奇异值分解结果:")

print("U_r =")

print(U_r)

print("Sigma_r =")

print(Sigma_r)

print("V_r^T =")

print(VT_r)

print("A_r =")

print(A_r)

9.求矩阵A的k=2的截断奇异值分解,并用源码实现和展示结果。

9.截断奇异值分解(Truncated Singular Value Decomposition,简称TSVD)是将一个矩阵分解为三个矩阵的乘积的过程,其中包括一个左奇异向量矩阵、一个对角奇异值矩阵和一个右奇异向量矩阵。在截断奇异值分解中,我们可以选择保留前 k 个最大的奇异值,将其余较小的奇异值置零。

TSVD 的计算过程如下:

对矩阵 A 进行奇异值分解,得到左奇异向量矩阵 U、奇异值矩阵 Sigma 和右奇异向量矩阵 V^{T}

保留 Sigma 矩阵的前 k 个最大奇异值,将其余较小的奇异值置零,得到截断后的 Sigma_k 矩阵。

计算截断后的矩阵 A_k = U[:, :k] @ Sigma_k @ V^T[:k, :]。

下面是用 Python 实现矩阵 A 的 k=2 的截断奇异值分解的代码示例:

输入:矩阵A,截断奇异值分解参数k

输出:近似矩阵A_k

对A做奇异值分解:A = U * S * V'

取S的前k个非零奇异值,其余奇异值设为0,得到对角矩阵S_k

取U的前k列,得到矩阵U_k

取V的前k行,得到矩阵V_k

近似矩阵A_k = U_k * S_k * V_k'

Python代码

import numpy as np

# 定义矩阵 A

A = np.array([[1, 1, 1],

           [0, 2, 0],

           [1, 2, 1],

           [0, 0, 1]])

# 奇异值分解

U, Sigma, VT = np.linalg.svd(A)

# 截断奇异值分解

k = 2

Sigma_k = np.diag(Sigma[:k])

A_k = U[:, :k] @ Sigma_k @ VT[:k, :]

print("截断奇异值分解结果:")

print("U =")

print(U[:, :k])

print("Sigma_k =")

print(Sigma_k)

print("V^T =")

print(VT[:k, :])

print("A_k =")

print(A_k)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值