机器学习数学基础(三):线性代数 矩阵

(一)矩阵

引例SVD

什么是SVD?

奇异值分解(Singular Value Decomposition)是一种重要的矩阵分解方法,可以看作对称方阵在任意矩阵上的推广。
在这里插入图片描述
与特征值、特征向量概念相对应:

  • ∑ \sum_{} 对角线上的元素称为矩阵A的奇异值
  • U 的第i列称为A的关于 σ i \sigma_i σi的左奇异向量
  • V 的第i列称为A的关于 σ i \sigma_i σi的右奇异向量

举例

  • 已知 4 × 5 4 \times 5 4×5阶实矩阵A,求A的SVD分解:
    在这里插入图片描述

  • 一个图像也可以看作一个矩阵,进行分解
    在这里插入图片描述

基础概念

定义

线性代数定义:方阵行列式

  • 1阶方阵行列式是该元素本身
  • n阶方阵行列式等于它任一行/列各元素与其对应的代数余子式乘积之和

代数余子式

  • 余子式
    在一个n阶行列式A中,把(i,j)元素 a i j a_ij aij所在的第i行和第j列划去后,留下的n-1阶方阵的行列式叫做元素 a i j a_ij aij的余子式,记作 M i j M_ij Mij
  • 代数余子式
    代数余子式 A i j A_ij Aij = ( − 1 ) i + j (-1)^{i+j} (1)i+j M i j M_ij Mij
    在这里插入图片描述

伴随矩阵

对于 n × n n \times n n×n方阵的任意元素 a i j a_ij aij都有各自的代数余子式 A i j A_ij Aij = ( − 1 ) i + j (-1)^{i+j} (1)i+j M i j M_ij Mij
构造 n × n n \times n n×n的方阵 A ∗ A^* A
在这里插入图片描述
A ∗ A^* A是A的伴随矩阵
A i j A_ij Aij位于 A ∗ A^* A的第j行第i列

方阵的逆

A ⋅ A ∗ = ∣ A ∣ ⋅ I A\cdot A^*=|A|\cdot I AA=AI
推导过程如下:
在这里插入图片描述

范德蒙行列式

证明范德蒙行列式,使用数学归纳法
在这里插入图片描述

矩阵的乘法/状态转移矩阵

矩阵乘法

A为 m × s m \times s m×s阶矩阵,B为 s × n s \times n s×n阶矩阵,那么,C= A × B A \times B A×B阶矩阵是 m × n m \times n m×n阶矩阵,其中
在这里插入图片描述

矩阵和向量乘法

A为 m × n m \times n m×n阶矩阵,B为 n × 1 n \times 1 n×1阶矩阵,则 A x Ax Ax m × 1 m \times 1 m×1列向量,记为 y → = A ⋅ \overrightarrow{y} = A\cdot y =A x → \overrightarrow{x} x
由于n维列向量和n维空间的点一一对应,上式也是从n维空间的点到m维空间点的线性变换(旋转、平移)。
特殊的,若m=n,Ax完成的是n维空间内的线性变换。

应用:机械手臂移动

状态转移矩阵

  • 状态转义概率
    某随机过程,状态有n个,用1—n表示。记在当前时刻t时位于i状态,再t+1时刻位于j状态的概率为P(i,j)= P(j | i),即状态转移概率只依赖于前一个状态。
    在这里插入图片描述

  • 概率转移矩阵
    第n+1代中处于第j个阶层的概率为:
    在这里插入图片描述
    此式中矩阵P为(条件)概率转移矩阵。第i行元素表示,在上一个状态为i时的分布概率,即:每一行元素和为1。

  • 平稳分布
    转移概率矩阵性质是初始概率不同,经过若干次迭代,最终稳定收敛在某个分布上,称为平稳分布,这个性质不是初始分布的性质。
    以下两种写法等价:
    在这里插入图片描述
    如果概率分布 π P = π \pi P = \pi πP=π,说明:
    (1)该多项分布是状态转移矩阵P的平稳分布;
    (2)线性方程xP = x的非负解为 π \pi π,而 P n P^n Pn唯一,因此 π \pi π是线性方程xP = x的唯一非负解

矩阵和向量组

矩阵的秩

设在矩阵A中有一个不等于零的r阶子式D,且所有r+1阶子式(若存在)为0,那么D为矩阵A的最高阶非零子式,r称为矩阵A的秩,记为 R ( A ) = r R(A)=r R(A)=r

  • n × n n \times n n×n的可逆矩阵,秩为n
  • 可逆矩阵又称满秩矩阵
  • 矩阵的秩等于它行(列)向量组的秩

秩和线性方程组解的关系

在这里插入图片描述
对于n元线性方程组 A x = b Ax = b Ax=b

  • 无解的充要条件是 R ( A ) < R ( A , b ) R(A) < R(A,b) R(A)<R(A,b)
  • 有唯一解的充要条件是 R ( A ) = R ( A , b ) = n R(A) = R(A,b) = n R(A)=R(A,b)=n
  • 有无限多解的充要条件是 R ( A ) = R ( A , b ) < n R(A) = R(A,b) < n R(A)=R(A,b)<n
    推论
  • A x = 0 Ax = 0 Ax=0 有非零解的充要条件是 R ( A ) < n R(A) < n R(A)<n
  • A x = b Ax = b Ax=b 有解的充要条件是 R ( A ) = R ( A , b ) R(A) = R(A,b) R(A)=R(A,b)

向量组等价

  • 什么是向量组等价
    向量 b → \overrightarrow{b} b 能由向量组A: a 1 → \overrightarrow{a_1} a1 , a 2 → \overrightarrow{a_2} a2 ,… a m → \overrightarrow{a_m} am 线性表出的充要条件是矩阵A=( a 1 → \overrightarrow{a_1} a1 , a 2 → \overrightarrow{a_2} a2 ,… a m → \overrightarrow{a_m} am )的秩等于矩阵B=( a 1 → \overrightarrow{a_1} a1 , a 2 → \overrightarrow{a_2} a2 ,… a m → \overrightarrow{a_m} am , b → \overrightarrow{b} b )的秩
    设有两个向量组A: a 1 → \overrightarrow{a_1} a1 , a 2 → \overrightarrow{a_2} a2 ,… a m → \overrightarrow{a_m} am 和B: b 1 → \overrightarrow{b_1} b1 , b 2 → \overrightarrow{b_2} b
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值