日常python使用过程中,免不了要安装各种包,可以使用Anaconda和Conda之类工具去维护,由于先入为主养成的习惯,博主一直使用pip轻量级工具(python默认安装后自带)。
详细的命令,此处就不赘述了,可以直接敲pip -h看子命令,或进一步看子命令的帮助(比如pip install -h)。本文只对日常高频使用中常见问题作为梳理:
1、国内源管理
官方国外源有时网络原因登不上报错,需要连国内源(比如清华大学、豆瓣,见附录一)。一种是每次敲pip命令时带上,比如:pip install -U pandas -i http://pypi.douban.com/simple/。但每次打开命令行敲有点太麻烦,更方便的方法,直接记录到配置文件中(比如%APPDATA%\pip\pip.ini,见附录二)。具体的配置信息也可以敲命令pip config list进行展示
2、安装包版本
一方面pip自身会对包之间依赖关系进行校验,比如某个包需要依赖pandas,且要求的版本为pandas<2.0,>=0.23.0(即在0.23.0到2.0之间的版本)。
那么问题来了,具体在当前镜像源上,有哪些版本可以供安装呢?可以直接敲pip install -U pandas==展示出来,执行会报错,但会把版本清单给列出来。然后找一个满足条件的版本,填写完整再执行一般即可,比如pip install -U pandas==1.5.3。
ERROR: Could not find a version that satisfies the requirement pandas== (from versions: 0.1, 0.2, 0.3.0, 0.4.0, 0.4.1, 0.4.2, 0.4.3, 0.5.0, 0.6.0, 0.6.1, 0.7.0, 0.7.1, 0.7.2, 0.7.3, 0.8.0, 0.8.1, 0.9.0, 0.9.1, 0.10.0, 0.10.1, 0.11.0, 0.12.0, 0.13.0, 0.13.1, 0.14.0, 0.14.1, 0.15.0, 0.15.1, 0.15.2, 0.16.0, 0.16.1, 0.16.2, 0.17.0, 0.17.1, 0.18.0, 0.18.1, 0.19.0, 0.19.1, 0.19.2, 0.20.0, 0.20.1, 0.20.2, 0.20.3, 0.21.0, 0.21.1, 0.22.0, 0.23.0, 0.23.1, 0.23.2, 0.23.3, 0.23.4, 0.24.0, 0.24.1, 0.24.2, 0.25.0, 0.25.1, 0.25.2, 0.25.3, 1.0.0, 1.0.1, 1.0.2, 1.0.3, 1.0.4, 1.0.5, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.4.0rc0, 1.4.0, 1.4.1, 1.4.2, 1.4.3, 1.4.4, 1.5.0rc0, 1.5.0, 1.5.1, 1.5.2, 1.5.3, 2.0.0rc0, 2.0.0rc1, 2.0.0, 2.0.1)
ERROR: No matching distribution found for pandas==
附录一:国内常见python镜像源
豆瓣(douban) http://pypi.douban.com/simple/ (推荐)
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
阿里云 http://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
附录二:pip配置参考(转载)