Brinson多期归因计算示例

Brinson算法是经典超额收益归因分析方法,单期归因易理解,多期归因较复杂且网上资料缺乏具体计算步骤。作者结合资料用Excel表对多期归因的三种方法(AKH算法、每期调整算法、Carino模型)进行演算,助读者理解计算步骤,不同算法总体结果仅尾差有细小差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

brinson算法是经典的超额收益归因分析方法,适用于对大类资产或行业/板块的归因分析,通过基金持仓横截面(时点)数据,将超额收益分解为资产配置效应和选择效应,同时残差项当做交叉效应。单期归因的算法很好理解,但多期归因就稍微有点复杂,网上资料大多是摆出一堆公式,具体计算步骤鲜有介绍,这对于我们理解多期归因或者开发人员去实现多期归因造成了莫大的困扰。

笔者结合网上资料及券商研报,拉了一个excel表,对多期归因的三种方法(AKH算法、每期调整算法、Carino模型)分别作了演算,通过excel单元格函数,相信读者能更深刻地理解归因的计算步骤。

一、备注

1、多期是指多个连续单期的累计归因
2、ER指excess return,AR指allocation,SR指selection,IR指interactive
3、注意brinson有BHB和BF两套归因方法(示例为BHB)
4、多期归因可以采取AKH、单期调整再累加及Carino模型等多种方法
5、1/2...代表期次,0代表期1的期初
6、类别可以是大类资产(股债等)或行业分类(申万一级等)
7、实测结果显示,不同算法总体结果一致,仅有尾差的细小差异
8、详情可参考20190630日海通证券研报《基金业绩归因方法论综述》

二、参考链接:

【基金量化研究系列】基金绩效归因模型——Brinson多期归因模型

【基金量化研究系列】基金绩效归因模型——Brinson多期归因模型之python实现

“海量”专题(130)——基金业绩归因方法论综述

多期Brinson业绩归因分析——Carino模型

Brinson多期归因计算示例(Excel版附件)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值