人工智能应用-实验7-胶囊网络分类minst手写数据集

🧡🧡实验内容🧡🧡

编写胶囊网络分类软件(编程语言不限,如 Python 等),实现对 MNIST 数据集分类的操作。


🧡🧡代码🧡🧡

import torch
from torch import nn
from torch.optim import Adam
import torch.nn.functional as F
from torchvision import transforms, datasets
import time
import matplotlib.pyplot as plt

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

train_set = datasets.MNIST('data', train=True, download=True, transform=transform)
test_set = datasets.MNIST('data', train=False, download=True, transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=1000, shuffle=True)


# !nvidia - smi
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)


# @title 胶囊 net
def squash(inputs, axis=-1):
    inputs = inputs.to(device)
    norm = torch.norm(inputs, p=2, dim=axis, keepdim=True)
    scale = norm ** 2 / (1 + norm ** 2) / (norm + 1e-8)
    return scale * inputs


# 预胶囊层
class PrimaryCapsule(nn.Module):
    def __init__(self, in_channels, out_channels, dim_caps, kernel_size, stride=1, padding=0):
        super(PrimaryCapsule, self).__init__()
        self.dim_caps = dim_caps
        self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)

    def forward(self, x):
        outputs = self.conv2d(x)
        outputs = outputs.view(x.size(0), -1, self.dim_caps)
        return squash(outputs)


# 胶囊层(重构层)
class DenseCapsule(nn.Module):
    def __init__(self, in_num_caps, in_dim_caps, out_num_caps, out_dim_caps, routings=3):
        super(DenseCapsule, self).__init__()
        self.in_num_caps = in_num_caps
        self.in_dim_caps = in_dim_caps
        self.out_num_caps = out_num_caps
        self.out_dim_caps = out_dim_caps
        self.routings = routings
        self.weight = nn.Parameter(0.01 * torch.randn(out_num_caps, in_num_caps, out_dim_caps, in_dim_caps))

    def forward(self, x):
        x_hat = torch.squeeze(torch.matmul(self.weight, x[:, None, :, :, None]), dim=-1)
        x_hat_detached = x_hat.detach()  # 通过detach()方法获得的张量不再具有梯度,即它是一个常量张量,不会对反向传播产生影响。
        # The prior for coupling coefficient, initialized as zeros.
        # b.size = [batch, out_num_caps, in_num_caps]
        b = torch.zeros(x.size(0), self.out_num_caps, self.in_num_caps)
        b = b.to(device)
        # print(f"b shape={b.shape}")
        assert self.routings > 0, 'The \'routings\' should be > 0.'
        for i in range(self.routings):
            # c.size = [batch, out_num_caps, in_num_caps]
            c = F.softmax(b, dim=1)
            c = c.to(device)
            # print(f"c shape={c.shape}")
            if i == self.routings - 1:
                # dim=-2:倒数第二个维度求和, keepdim=True:保持计算前后维度不变
                outputs = squash(torch.sum(c[:, :, :, None] * x_hat, dim=-2, keepdim=True))
            else:  # Otherwise, use `x_hat_detached` to update `b`. No gradients flow on this path.
                outputs = squash(torch.sum(c[:, :, :, None] * x_hat_detached, dim=-2, keepdim=True))
                b = b + torch.sum(outputs * x_hat_detached, dim=-1)
        # print(f"outputs shape={torch.squeeze(outputs, dim=-2).shape}")
        return torch.squeeze(outputs, dim=-2)  # 将倒数第二维去掉


# 组合以上
class CapsuleNet(nn.Module):
    def __init__(self, input_size, classes, routings):
        super(CapsuleNet, self).__init__()
        self.input_size = input_size
        self.classes = classes
        self.routings = routings

        # Layer 1: Just a conventional Conv2D layer
        self.conv1 = nn.Conv2d(
            input_size[0], 256, kernel_size=9, stride=1, padding=0)

        # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_caps, dim_caps]
        self.primarycaps = PrimaryCapsule(
            256, 256, 8, kernel_size=9, stride=2, padding=0)

        # Layer 3: Capsule layer. Routing algorithm works here.
        self.digitcaps = DenseCapsule(in_num_caps=32 * 6 * 6, in_dim_caps=8,
                                      out_num_caps=classes, out_dim_caps=16, routings=routings)

        self.relu = nn.ReLU()

    def forward(self, x, y=None):
        x = self.relu(self.conv1(x))
        x = self.primarycaps(x)
        x = self.digitcaps(x)
        # 对(64,10,16),计算最后一维向量的长度,即对应10个分类类别的存在概率,16蕴含特征的空间、局部位置等信息
        length = x.norm(dim=-1)
        return length


# @title Train and Test
def test(data_iter, net):
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            X = X.to(device)
            y = y.to(device)
            if isinstance(net, torch.nn.Module):
                net.eval()  # 评估模式, 这会关闭dropout
                acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
                net.train()  # 改回训练模式
            else:
                if ('is_training' in net.__code__.co_varnames):  # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            n += y.shape[0]
    return acc_sum / n


def train(train_iter, test_iter, net, loss, optimizer, epochs):
    batch_count = 0
    loss_list = []
    test_acc_list = []

    for epoch in range(epochs):
        train_loss_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_loss_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
            batch_count += 1
            # print(f"batch_count: {batch_count}")
        test_acc = test(test_iter, net)
        loss_list.append(train_loss_sum / batch_count)
        test_acc_list.append(test_acc)
        print('==========Epoch=%d========== \nloss=%.4f, train_acc=%.5f, test_acc=%.5f, time %f min'
              % (epoch + 1, train_loss_sum / batch_count, train_acc_sum / n,
                 test_acc, (time.time() - start) / 60))
    # 绘制损失函数随训练轮数的变化图
    plt.plot(range(1, epochs + 1), loss_list)
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.title('Training Loss')
    plt.show()
    # 绘制准确率随训练轮数的变化图
    plt.plot(range(1, epochs + 1), test_acc_list)
    plt.xlabel('Epochs')
    plt.ylabel('acc')
    plt.title('Test acc')
    plt.show()


batch_size, lr, epochs = 100, 0.001, 4
net = CapsuleNet(input_size=[1, 28, 28], classes=10, routings=8)
net = net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
loss = loss.to(device)
train(train_loader, test_loader, net, loss, optimizer, epochs)

🧡🧡分析结果🧡🧡

数据预处理:
加载数据集:
加载torch库中自带的minst数据集
转换数据:
转为tensor变量(相当于直接除255归一化到值域为(0,1)),再设置mean和st
d标准化到(-1,1)区间。

设置基本参数:
在这里插入图片描述

构建胶囊网络:

  • 第一层:(64,28,28,1) => (64,20,20,256)
    - 卷积核大小为9,步长为1,故图片由28×28缩小为20×20,输出特征数设为256
  • 第二层:(64, 20, 20, 256) => (64,6,6,256) => (64, 1152, 8)
    - 先进行一层卷积操作,卷积核大小为9,步长为2,故图片由20×20缩小为6×6,输出特征数仍然为256。
    - 将输出通道数256分割成32×8的向量,合并中间维度(64, 6×6×32, 8) =>(64, 1152, 8),即有1152个胶囊,每个胶囊维度为8。
    进行squash激活。
  • 第三层:(64, 1152, 8) => (64, 10, 16)
    - 输入的胶囊个数为1152,维度为8,目标是转为胶囊个数为10,维度为16。
    - 对输入向量扩维:(64, 1152, 8) =>(64, 1, 1152, 8, 1),然后使用维度为 (1, 10, 1152, 16, 8)的权重w与其进行矩阵乘法,得到x_hat ,其维度为(64, 10, 1152, 16, 1),去除最后一维,维度变成 (64, 10, 1152, 16)。
    - 设置初始权重b,其维度为(64, 10, 1152, 1),使用动态路由算法将归一化后的b与x_hat多次相乘并累加,得到维度为(64, 10, 1, 16)的向量,去除倒数第二个维度,最后变为(64, 10, 16)的输出向量。
  • 输出结果:(64, 10, 16) => (64, 10)
    - 64代表batch_size,10代表10个图片分类标签,16代表这10个向量所具有的空间、相对位置等相关信息(CNN则没有),通过计算这10个向量的长度,即可得到分类概率。
    在这里插入图片描述

模型训练与评估:
可以看到,设置了4个epoch,准确率即达到了98.7%, 高于CNN和BP。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分析胶囊参数对分类准确率的影响
更改胶囊参数原则:
在卷积核参数不变的情况下,主要第二层预胶囊层中的输出胶囊维度,然后自己手算第二层预胶囊层的输出个数;之后第三层胶囊层的输入胶囊个数和维度同第二层的胶囊输出维度,第三层胶囊层个数为10固定不变(因为有10个类别),胶囊层维度可以更改。
在这里插入图片描述
被对照实验:
输入胶囊个数=1152、输入胶囊维度=8、输出胶囊个数=10、输出胶囊维度=16
参照问题1,准确率为98.70%,运行时间为4.931 minutes
对照实验1:
输入胶囊个数=512、输入胶囊维度=16、输出胶囊个数=10、输出胶囊维度=16
在这里插入图片描述
在这里插入图片描述
对照实验2:
输入胶囊个数=512、输入胶囊维度=16、输出胶囊个数=10、输出胶囊维度=32
在这里插入图片描述
在这里插入图片描述
对照实验3:
输入胶囊个数=512、输入胶囊维度=16、输出胶囊个数=10、输出胶囊维度=8
在这里插入图片描述
在这里插入图片描述
总结以上结果如下表(epoch=4):
(表格中的“输入输出”指的是第三层胶囊层的输入输出胶囊)
在这里插入图片描述
由此分析可知:

  • 输入胶囊个数和维度:
    在第一行和第二行中,更改第三层的输入胶囊个数和维度,一方面增加了输入胶囊的维度,使得每个胶囊能够表示更多的特征信息,从而提高了分类准确率;另一方面胶囊个数减少,从而减少了运行时间。
  • 输出胶囊个数和维度:
    观察第二、三行、四行,可以看到随着输出胶囊维度减小,分类准确率得到提高,且模型运行时间相应减少。据此判断胶囊维度小,浓缩了对判断分类最为有利的特征信息,减少了冗余无用的干扰信息,因此使得准确率得到提高。

🧡🧡实验总结🧡🧡

理论理解方面:
胶囊网络与CNN卷积网络的主要区别:

  • CNN擅长提取图像中的局部特征,其中,池化层可以降低采样数,将一个邻域的重要特征提取出来以代表区域特征,但是,也正因为此,池化层的计算过程中会损失空间特征,即特征组合的相对信息位置。例如对于一张人脸图像,CNN很容易提取出眼睛、嘴巴、鼻子这些局部的重要的特征,但是眼睛、嘴巴、鼻子之间的相对位置关系却无法获得。
  • 基于以上CNN存在的问题,而提出了胶囊网络的概念,胶囊网络中的胶囊单元(包含许多神经元)能够捕捉图像中的层次结构和空间关系,并且设计了动态路由算法来实现胶囊之间的信息传递和姿态估计。

代码实操方面:

  • 首先是运行时间问题,前两次CNN和BP实验中,用CPU跑,分别设计epoch=5和epoch=15,运行时间在3-4min左右,而本次实验,我首先用的CPU跑,但是跑了半个小时仍然没有完成一个epoch,于是感叹它的复杂性。好在Google colab自带免费的GPU,才解决了我的燃眉之急。本实验中,一开始设置为epoch=5时,超过了Google colab自带的GPU算力,运行不下去,只好统一设计为epoch=4。
  • 其次是复杂的矩阵运算。二维矩阵与二维矩阵相乘我还会,但是在重构胶囊信息时,要进行五维矩阵与五维矩阵的乘法,例如维度(64, 10, 1152, 16, 8)的矩阵与维度(64, 1, 1152, 8, 1)进行矩阵乘法,就比较懵了。通过网上学习,了解到:只要看最后两维度相乘,前面的维度通过“维度广播”一般取最大值即可,所以相乘之后的矩阵的维度为(64, 10, 1152, 16, 1)。
  • 31
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逻辑回归是一种用于解决二分类问题的机器学习算法。在本实验中,我们使用逻辑回归算法来识别MINST(MNIST手写数字数据集中的手写数字。 MNIST手写数字数据集是一个经典的机器学习数据集,其中包含了一系列由手写数字图片组成的训练样本。每张图片都是28x28像素大小,灰度图像,被标记为0到9之间的数字。 在实验中,我们首先需要加载MNIST数据集,并对数据进行预处理。预处理包括将每张图片转换为一维向量、标准化像素值以及划分训练数据集和测试数据集。 接下来,我们将使用逻辑回归算法来训练模型。在训练阶段,我们将使用训练数据集来调整模型的权重参数,以便能够将输入图片正确分类为0到9的数字之一。训练过程中,逻辑回归算法将通过优化损失函数来最小化预测结果与真实标签之间的差异。 训练完成后,我们将使用测试数据集来评估模型的性能。通过将测试样本输入模型并将预测结果与真实标签进行比较,可以计算出模型的准确度、精确度、召回率等指标,以评估逻辑回归算法在MINST手写数字数据集上的识别能力。 在实验中,我们可以调整逻辑回归算法的超参数(如学习率、正则化项)来优化模型性能。另外,我们还可以使用特征工程来提取更有信息量的特征,从而提高模型的性能。 总而言之,通过使用逻辑回归算法识别MINST手写数据集,我们可以实现对手写数字的自动识别,并对模型的准确度进行评估和优化。这个实验不仅可以帮助我们理解逻辑回归算法的原理和应用,还可以为实际的手写数字识别问题提供有用的参考和指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值