# bellmanford（poj3259 wormholes）

Wormholes
 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 59980 Accepted: 22417

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: NM, and W
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

POJ 3259

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

F行，每行代表一个农场

NO
YES

#include<iostream>
#include<cstring>
using namespace std;
#define Max 99999
struct
{
int start,end,time;
}edge[6000];
int point_num,edge_num,dis[505];
bool bellmanford()
{
for(int i=2;i<=point_num;i++) dis[i]=Max;
for(int i=1;i<point_num;i++)
{
bool finish=true;//全部完成松弛的判断
for(int j=1;j<=edge_num;j++)
{
int u=edge[j].start;
int v=edge[j].end;
int w=edge[j].time;
if(dis[v]>dis[u]+w)//松弛
{
dis[v]=dis[u]+w;
finish=false;
}
}
if(finish) break;
}
for(int i=1;i<=edge_num;i++)//是否存在负环的判断
{
int u=edge[i].start;
int v=edge[i].end;
int w=edge[i].time;
if(dis[v]>dis[u]+w) return true;
}
return false;
}
int main()
{
int farm;
cin>>farm;
while(farm--)
{
int field,path,hole;
cin>>field>>path>>hole;
int s,e,t,i,k=0;
for(int i=1;i<=path;i++)
{
cin>>s>>e>>t;
k++;
edge[k].start=s;
edge[k].end=e;
edge[k].time=t;
k++;
edge[k].start=e;
edge[k].end=s;
edge[k].time=t;
}
for(int i=1;i<=hole;i++)
{
cin>>s>>e>>t;
k++;
edge[k].start=s;
edge[k].end=e;
edge[k].time=-t;
}
point_num=field;
edge_num=k;
if(bellmanford()) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}