背景: 大数据的时代,人类的行为总是通过数据记录来展现,me每一个数据有了自己的行业背景就赋予了不一样的意义
萌生的想法点:
(1) 为何不把数据分成外部的环境模型---------------------天时地利
通过获得的客观的外部的情况数据,比如: 大环境下的政策趋势,行业发展的qi情况,做一个客观的宏观的数据模型,通过这个模型我们得到一个外部条件的 评估数值A
我觉的这些数据的好处就是可预测性高。 没有太多的主观因素,会更好的符合函数走势
(2) 主观的数据-------------------------------人的xi行为影响的数据-----------------------人和
一些数据的结果是受人的主观的情感的制约的,每一个人的偏好是不一样的。 建立不同的数据模型,而这些数据模型结合之前的客观的数据模型,然后进行评估。 得到一个数值。
从而实现人行为的预测,或者是受人行为的趋势预测
好处:
(1) 将数据单独开来-----客观数据模型可以反复的使用减少了重复运算
缺点
(1)如何恰当的分离数据,没有合适的bi标准啊。
总结:
今天新闻偶然想到的,也不清楚是不是异想天开, 记录一下,勉励自己思考。