【统计学|学习笔记】统计学和回归分析中的残差(residual)和零假设(null hypothesis)?

【统计学|学习笔记】统计学和回归分析中的残差(residual)和零假设(null hypothesis)?

【统计学|学习笔记】统计学和回归分析中的残差(residual)和零假设(null hypothesis)?



欢迎铁子们点赞、关注、收藏!
祝大家逢考必过!逢投必中!上岸上岸上岸!upupup

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/2401_89898861/article/details/146638463


前言

在统计学和回归分析中,

残差(residual)是指观测值与模型预测值之间的差异。具体而言,残差是每个数据点的实际观测值与通过回归模型预测得到的值之间的差距,通常表示为:

在这里插入图片描述
其中:

  • e i e_i ei是第 i i i 个数据点的残差;
  • y i y_i yi 是第 i i i 个数据点的实际观测值;
  • y ^ i \hat y_i y^i 是第 i i i 个数据点通过回归模型预测得到的值。

残差的作用

残差在回归分析中具有重要作用,主要体现在以下几个方面:

  • 模型拟合优度的评估:残差的分布情况可以帮助评估模型的拟合效果。理想情况下,残差应随机分布,且均值为零,方差恒定。
  • 假设检验:通过分析残差,可以检验回归模型的假设是否成立,如线性关系、误差的独立性和同方差性等。
  • 异常值和影响点的识别:异常大的残差可能指示数据中的异常值或影响点,这些点可能对模型的拟合产生较大影响。

残差的分析方法

在回归分析中,常用以下方法对残差进行分析:

  • 残差图:绘制残差与预测值的散点图,检查残差是否随机分布,是否存在系统性模式。
  • 正态概率图:检查残差是否符合正态分布,正态性是许多统计检验的前提。
  • Durbin-Watson检验:检验残差的自相关性,尤其是在时间序列数据中。
  • Breusch-Pagan检验:检验残差的异方差性,即误差项的方差是否恒定。

通过对残差的分析,可以判断回归模型的适用性和有效性,从而为模型的改进和优化提供依据


前言

在统计学中,零假设(null hypothesis)是一种假设检验的起点假设,通常表示不存在显著效应或差异。​它假定研究中观察到的任何差异或关系仅仅是由于随机变异,而非实际存在的效应。​零假设通常用符号 H 0 H0 H0 表示。​

零假设的作用:

  • 提供比较基准:​零假设为统计检验提供了一个基准,帮助研究者判断观测结果是否具有统计学意义。​
  • 控制错误类型:​通过检验零假设,可以控制第一类错误(错误地拒绝真实的零假设)和第二类错误(未能拒绝虚假的零假设)的发生概率。​

零假设的示例:

  • 均值比较:​在比较两组数据均值时,零假设可能是“两组均值相等”。​
  • 相关性检验:​在检验两个变量是否相关时,零假设可能是“两个变量之间没有线性关系”。​

零假设的检验过程:

  1. 设定零假设和备择假设:​明确零假设 H 0 H0 H0 和与之对应的备择假设 H 1 H1 H1 。​
  2. 选择适当的统计检验:​根据数据类型和研究设计,选择t检验、卡方检验等合适的统计方法。​
  3. 计算检验统计量:​使用样本数据计算检验统计量,如t值、F值等。​
  4. 确定p值:​计算p值,即在零假设为真的前提下,获得当前或更极端观测结果的概率。​
  5. 做出决策:​如果p值小于预设的显著性水平(如0.05),则拒绝零假设,认为结果具有统计学意义;否则,未能拒绝零假设。​

需要注意的是,零假设并不一定表示研究者认为其成立,而是作为一种统计工具,用于通过数据分析来判断观测结果是否可能由随机因素引起

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值