

教材中(《医学统计学》第七版,李康、贺佳,人民卫生出版社)列举了对于不同类型的资料,可以使用包括t检验、方差分析、卡方检验、非参数检验、直线回归与相关等在内的不同方法处理资料,本期内容我们将对这些检验方法进行详细的对比和区别。
0 1适用条件对比表检验类型 | 适用条件 | ||
T检验 | 单样本t检验 | 来自正态分布下某个样本均数和总体均数的比较(计量资料) | |
配对样本均数t检验 | 正态分布,配对设计的计量资料,是由两个个体相配对,需要计算各对数据的差值 | ||
两独立样本均数比较t检验 | 完全随机设计的两样本均数,检验两样本所来自总体的均数是否相等,需符合正态分布(或近似正态分布),方差齐 | ||
方差分析 | 完全随机设计(单因素方差分析) | 多于两组样本均数的比较,要求正态分布、方差齐(随机区组设计方差分析将总变异分解为3部分,即除处理组间之外,还将区组因素导致的变异也分离出来,从而减少了随机误差,提高了实验效率) | |
区组随机设计(两因素方差分析) | |||
c²检验 | 四格表资料 | 适用于计数资料,推断两个总体率或构成比有无差别 | |
R*C表资料 | 适用于计数资料,多个样本构成比比较,以及双向无序分类资料关联性检验 | ||
非参数检验 | 配对资料设计的符号秩和检验 | 不依赖总体分布,也不涉及总体参数,而是对总体的位置进行假设检验 | 配对设计的非假设检验,用于推断配对资料的差值是否来自中位数为零的总体 |
两独立样本比较的秩和检验 | 不符合正态分布且方差齐的两独立样本资料,其目的是比较两独立样本分别代表的总体分布位置有无差异 | ||
多个独立样本比较的秩和检验 | 多个独立样本计量资料比较,数据不满足方差分析 |
假设检验的三大步骤分别是:
(1)建立假设,确定检验水准
(2)计算检验统计量
(3)根据P值,得出结论
在这里需要说明的是,(1)当中,我们所建立的H0,一定是在假定H0成立的前提下,检验水准通常为α=0.05;(3)当中,我们根据计算得出概率的大小,可以推断P值与检验水准之间的大小关系,从而得出结论。需要注意的是,P越小,越有理由拒绝原假设,差异有统计学意义
0 2场景举例一、t检验
1、单样本t检验:比较某一样本均数和总体均数是否有差异,单个样本符合正态分布
例如,已知某地新生儿平均出生体重,随机抽取若干名难产新生儿,比较平均体重和一般新生儿体重是否有差异;或是,已知服用某种药物的人的某项指标,将其与正常人的某项指标进行比较,是否有差异。
【检验步骤】
(1)建立假设检验,确定检验水准
H0:μ=μ0,XXXXX与XXXXXX相同
H1:μ≠μ0,XXXXX与XXXXXX不同
α=0.05
(2)计算检验统计量
在μ=μ0成立的条件下计算t值,自由度v=n-1
(3)根据P值,作出推断结论
查表得:t0.05/2,n-1=X,将t值和X值进行比较,若t<X,则P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为XXXXX与XXXXXX不同;若t>X,则P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为XXXXX与XXXXXX有差别
2、两独立样本t检验:又称成组t检验,适用于两个样本、计量资料之间的比较,可以检验两样本所来自的总体均数是否相同
例如,调查部分男婴、女婴的出生体重由此观察新生儿男婴和女婴的出生体重是否相同;或是比较两种环境中两组运动员心肌血流量的总体均数是否相同。
【检验步骤】
(1)建立假设检验,确定检验水准
H0:μ1=μ2,XXXXX与XXXXXX相同
H1:μ1≠μ2,XXXXX与XXXXXX不同
α=0.05,双侧检验
(2)计算检验统计量
在μ=μ0成立的条件下计算t值,自由度v=n1+n2-2
(3)根据P值,作出推断结论
查表得:t0.05/2, n1+n2-2=X,将t值和X值进行比较,若t<X,则P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为XXXXX与XXXXXX不同;若t>X,则P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为XXXXX与XXXXXX有差别
3、配对样本t检验:适用于配对设计的计量资料,其差值符合正态分布
例如,两个药在服用前后对某个人的某项指标的影响,即对同一个体的同一观察指标,用两种不同的观察方法计算得出前后不同的计量资料进行检验
【检验步骤】
(1)建立假设检验,确定检验水准
H0:μd=0,XXXXX(指标)差值为零
H1:μd≠0,XXXXX(指标)差值不为零
α=0.05
(2)计算检验统计量
先计算差值d及d2,再计算t值,自由度v=n-1
(3)根据P值,作出推断结论
查表得:t0.05/2, n-1=X,将t值和X值进行比较,若t<X,则P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为XXXXX与XXXXXX不同;若t>X,则P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为XXXXX与XXXXXX有差别
二、方差分析(F检验)
1、完全随机设计的方差分析(单因素):适用于3组及3组以上计量资料之间的比较,其基本思想是把全部观测值的总变异按照影响因素分解为若干部分变异,在此基础上计算假设检验的统计量F值,实现对总体均数是否有差别的统计推断。注意独立性、正态性和方差齐。
例如,将受试对象分为3组观察,比较三组间的观察指标是否相同
【检验步骤】
(1)建立假设检验,确定检验水准
H0:μ1=μ2=μ3,三组总体均数相等
H1:μ1、μ2、μ3不全相等,三组总体均数不全相等
α=0.05
(2)计算检验统计量
完全随机设计方差分析表如下:
(3)根据P值,作出推断结论
查表得:F0.05,(分子自由度,分母自由度)=X,将F值和X值进行比较,若F<X,则P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为三组数据不同;若F>X,则P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为三组数据有差别
2、随机区组设计方差分析(两因素):多数情况下资料为随机区组设计,因此采用两因素方差分析
例如,比较三组数据的某一指标是否相等,即比较三组总体均数是否相等
【检验步骤】
(1)建立假设检验,确定检验水准
H0:μ1=μ2=μ3,三组总体均数相等
H1:μ1、μ2、μ3不全相等,三组总体均数不全相等
α=0.05
(2)计算检验统计量
随机区组设计方差分析表如下:
(3)根据P值,作出推断结论
查表得:F0.05,(分子自由度,分母自由度)=X,将F值和X值进行比较,若F<X,则P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为三组数据不同;若F>X,则P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为三组数据有差别
三、卡方检验
1、四格表资料:用于计数资料,包括完全随机设计的四格表和配对四格表,配对四格表用于配对设计的二分类资料
例如,配对四格表常用于两种检测方法、两种诊断方法或两种细菌培养方法,其特点是对样本中各观察单位分别用两种方法检验或处理,然后按两分类变量计数结果
【检验步骤】
(1)建立假设检验,确定检验水准(配对四格表用B=C或B≠C表示)
H0:π1=π2, XXXXX与XXXXXX无差异
H1:π1≠π2,XXXXX与XXXXXX有差异
α=0.05
(2)计算检验统计量
计算T值和c²,自由度v=1
(3)根据P值,作出推断结论
查表得:P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为XXXXX与XXXXXX不同; P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为XXXXX与XXXXXX有差别
2、R*C列联表资料:用于多个样本率或多个构成比的比较
例如,比较三种治疗方法治疗某种疾病的有效率是否相同等
【检验步骤】
(1)建立假设检验,确定检验水准
H0:π1=π2=π3,三种治疗方案的总体有效率相等
H1:π1、π2、π3不全相等,三种治疗方案的总体有效率不全相等
α=0.05
(2)计算检验统计量
计算和c²,自由度v=(R-1)(C-1)
(3)根据P值,作出推断结论
查表得:P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0,尚不能认为XXXXX与XXXXXX不同; P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1,可以认为XXXXX与XXXXXX有差别
四、非参数检验
1、配对设计资料的符号秩和检验:属于配对设计的非参数检验,用于推断配对资料的差值是否来自中位数为零的总体。
例如,临床研究两种不同疗法对同一指标的比较,或者是同一指标对患病部位和非患病部位的比较
【检验步骤】
(1)建立假设检验,确定检验水准
H0:Md=0, XXXXX与XXXXXX的总体中位数为零
H1:Md≠0,XXXXX与XXXXXX的总体中位数不为零
α=0.05
(2)编秩次求秩和,计算检验统计量
按差值绝对值大小,由小到大编秩,并按差值的正负给秩次加上正负号,若为0则舍去不计,n也要相同地减去此对;若差值的绝对值相等,取其平均秩次;最后,计算T+和T-值,取值较小的一个
(3)根据P值,作出推断结论
①当n≤50时,可查配对设计用T界值表,若T值在上下界值范围内,则P>表上方的概率值;若T值在上下界值外,则P<表上方的概率值
结论:P>0.05,表明差异无统计学意义,按α=0.05水准不拒绝H0; P<0.05,表明差异有统计学意义,按α=0.05水准拒绝H0,接受H1
②当n>50时,可利用秩和分布的近似正态法检验;当相同秩次较多时,应采用校正公式
2、两独立样本比较的秩和检验:两独立样本比较的计量资料
【检验步骤】
(1)建立假设检验,确定检验水准
H0:Md=0, XXXXX与XXXXXX的总体分布相同
H1:Md≠0,XXXXX与XXXXXX的总体分布不同
α=0.05
(2)编秩次求秩和,计算检验统计量
按差值绝对值大小,由小到大编秩,并按差值的正负给秩次加上正负号,若为0则舍去不计,n也要相同地减去此对;若差值的绝对值相等,取其平均秩次;最后,计算T+和T-值,取值较小的一个
(3)根据P值,作出推断结论
①当n1≤10,n2-n1≤10时,可查两样本比较的T界值表。先从表左侧查n1(两样本量较小者),再从表上方找到两样本量的差,两者交叉处即为T值。
若T值在上下界值范围内,则P>表上方的概率值;若T值在上下界值外,则P<表上方的概率值
②当n1≤n2时,如果n1和n2-n1超出T界值表范围,可用正态近似检验
3、多个独立样本比较的秩和检验:多组独立样本计量资料
【检验步骤】
(1)建立假设检验,确定检验水准
H0:三组XXXXX总体分布相同
H1:三组XXXXX总体分布不同
α=0.05
(2)编秩次求秩和,计算检验统计量
将各组数据按差值绝对值大小,由小到大编秩,并按差值的正负给秩次加上正负号,若为0则舍去不计,n也要相同地减去此对;若差值的绝对值相等,取其平均秩次;最后,计算各组秩和T,最后计算检验统计量H
(3)根据P值,作出推断结论
①当组数k=3,每组例数n≤5,可查H界值表从而得到P值
②不满足上述条件,H或HC近似服从自由度v=k-1的卡方分布,查卡方界值表得到P值。
0 3附表:公式往期相关:
统计学|统计推断
统计学|统计描述
统计学|遨游统计的海洋