​​《3天狂揽3000星!LangManus本地部署全流程:手把手教你玩转国产AI自动化神器》

目录

一、LangManus简介

1、架构设计:分层多智能体协作

2、核心技术优势

3、工具与生态集成

4、典型应用场景

5、与同类框架的差异化

6、总结

二、基础环境准备

1. 克隆仓库

2. 安装依赖工具

三、后端部署

1. 安装依赖

2. 配置环境变量

3. 启动后端服务

4、快速开始

四、前端部署(可选)

1. 安装依赖

2. 配置API地址

3. 启动前端界面

五、模型服务配置建议

六、常见问题解决

七、应用场景示例

1. 案例一、写一个公司分析报告

参考资料


一、LangManus简介

LangManus 是一款由开源社区驱动的多智能体 AI 自动化框架,其核心设计理念是通过分层协作的智能体系统,将语言模型与专业工具(如网络搜索、代码执行等)深度结合,实现复杂任务的自动化处理。以下是其核心特性的综合解析:

1、架构设计:分层多智能体协作

LangManus 采用七角色智能体系统,模拟人类团队分工模式,实现任务的高效拆解与协同执行:

  1. 协调员(Coordinator):接收用户指令并分配任务,是整个工作流的入口。
  2. 规划员(Planner):针对复杂任务制定执行策略,例如设计加权计算公式或拆分多步骤流程。
  3. 研究员(Researcher):通过集成 Tavily API 和 Jina 神经搜索技术,实现精准的网络数据抓取与语义检索。
  4. 程序员(Coder):支持 Python 和 Bash 脚本的实时生成与执行,可直接调用数据分析库(如 Pandas)进行运算。
  5. 浏览器(Browser):基于 Playwright 实现自动化网页操作,包括点击、滚动、表单填写等交互行为。
  6. 主管(Supervisor):实时监控任务进度,动态调整智能体协作流程。
  7. 报告员(Reporter):整合执行结果生成结构化报告,支持 Markdown 和可视化图表输出。

2、核心技术优势

  1. 三层 LLM 系统
    推理层:解析复杂指令(如权重设计);
    基础层:处理常规文本生成;
    视觉层:分析图像内容(如截图理解)。
  2. 动态决策引擎
    采用模块化设计,支持智能体独立训练与扩展,通过“关键帧”机制编排动作(如 API 调用、代码生成)。
  3. 零样本跨领域适应
    基于多模态预训练(代码、文档、日志数据),无需微调即可快速适应新场景。
  4. 透明化执行追踪
    提供思维链日志和实时状态监控界面,用户可随时介入调整任务流程。

3、工具与生态集成

搜索工具:Tavily API 实现毫秒级网络检索,Jina 支持语义化内容提取。
代码环境**:内置 Python REPL 和 UV 包管理器,兼容主流数据分析库。
模型兼容:支持 Qwen、DeepSeek R1 等国产模型,同时适配 OpenAI 接口。
可视化界面:提供 Web UI 监控任务流程图与智能体协作状态。


4、典型应用场景

  1. 企业效率工具
    • 自动化生成周报(连接 Confluence、Jira 等系统);
    • 智能客服系统(基于知识库实时生成技术答疑)。
  2. 开发者工具
    • 一键部署 Web 应用(生成前后端代码并托管至云服务器);
    • GitHub 竞品分析(抓取项目数据生成技术栈对比报告)。
  3. 科研与商业分析
    • 文献综述自动化(收集并总结领域论文);
    • 市场趋势报告生成(抓取竞争对手数据并可视化)。

5、与同类框架的差异化

相较于 Manus(商业化产品)等竞品,LangManus 的核心优势在于:
开源社区驱动:MIT 协议允许二次开发,已吸引超 3000 GitHub Star;
国产模型适配:深度集成通义千问、DeepSeek 等本土大模型;
全链路工具链:从数据采集到报告生成实现闭环,减少人工干预。


6、总结

LangManus 通过多智能体协作架构和开源生态,正在重塑 AI 自动化任务的执行范式。其设计理念不仅提升了复杂任务的处理效率(如某案例中企业报告生成速度提升 40%),提供了高度可扩展的技术底座。随着国产大模型生态的完善,LangManus 或将成为 AI 自动化领域的标杆框架。

二、基础环境准备

1. 克隆仓库

# 后端核心项目
git clone https://github.com/zeus-maker/langmanus.git
cd langmanus

# 前端界面(可选)
git clone https://github.com/zeus-maker/langmanus-web.git
cd langmanus-web

2. 安装依赖工具

Python 3.12+:需通过 Miniconda 或 pyenv 管理
uv 包管理器(替代 pip):

curl -LsSf https://astral.sh/uv/install.sh | sh  # 自动安装

Node.js v22.14+:用于前端界面(官网下载
pnpm(替代 npm):

npm install -g pnpm@latest-10

三、后端部署

1. 安装依赖

cd langmanus
# 安装Python依赖
uv sync
# 安装浏览器内核
uv run playwright install chromium

2. 配置环境变量

复制 .env.example.env,按需修改以下关键配置:

# LLM Environment variables

# 推理模型(需支持复杂任务)
REASONING_API_KEY=sk-xxx
REASONING_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
REASONING_MODEL=qwq-plus

# 基础模型(简单生成任务)
BASIC_API_KEY=sk-xxx
BASIC_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
BASIC_MODEL=qwen-max-latest

# 视觉模型(需支持图像识别)
VL_API_KEY=sk-xxx
VL_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
VL_MODEL=qwen2.5-vl-72b-instruct

# Application Settings
DEBUG=True
APP_ENV=development

# Add other environment variables as needed
# 搜索API(必填)
TAVILY_API_KEY=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

# 浏览器配置
CHROME_INSTANCE_PATH=/Applications/Google Chrome.app/Contents/MacOS/Google Chrome  # 可选,Chrome 可执行文件路径
CHROME_HEADLESS=False  # 可选,默认是 False
CHROME_PROXY_SERVER=http://127.0.0.1:10809  # 可选,默认是 None
CHROME_PROXY_USERNAME=  # 可选,默认是 None
CHROME_PROXY_PASSWORD=  # 可选,默认是 None

https://bailian.console.aliyun.com/#/home

sk-f8a6bb0d68eb417db0879b982ff9908a

Tavily

tvly-dev-xxx

3. 启动后端服务

uv run server.py  # 默认端口8000


4、快速开始

# 克隆仓库
git clone https://github.com/langmanus/langmanus.git
cd langmanus

# 用uv创建并激活虚拟环境
uv python install 3.12
uv venv --python 3.12

source .venv/bin/activate  # Windows系统使用: .venv\Scripts\activate

# 安装依赖
uv sync

# 配置环境
cp .env.example .env
# 编辑 .env 文件,填入你的 API 密钥

# 运行项目
uv run main.py

四、前端部署(可选)

1. 安装依赖

cd langmanus-web
# 淘宝镜像源[1,4,6](@ref)
npm config set registry https://registry.npmmirror.com
npm install -g pnpm@latest-10
pnpm install

2. 配置API地址

复制 .env.example.env,设置后端地址:

NEXT_PUBLIC_API_URL=http://localhost:8000

3. 启动前端界面

# 访问 http://localhost:3000
pnpm dev  

五、模型服务配置建议

  1. 本地部署方案
    推荐使用 Ollama 运行量化模型(如 qwq3bit),节省显存且响应更快。

  2. 云端模型接入
    支持硅基流动、DeepSeek、通义千问等国产模型,需在对应平台申请 API 密钥。

六、常见问题解决

  1. 依赖安装失败
    使用清华镜像加速:export UV_DEFAULT_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
  2. Playwright 浏览器安装超时
    手动下载 Chromium 并指定路径:
uv run playwright install --with-deps chromium
  1. 模型调用报错
    检查 .env 中模型是否支持工具调用(需带 tools 标签),视觉模型需同时支持 vision 功能。

七、应用场景示例

自动化报告生成:输入任务描述,系统自动完成数据采集、分析及可视化
企业级私密部署:结合 Docker 和 AWS Graviton 实现高性能私有化方案

更多配置细节可参考 GitHub 官方文档 或社区讨论。

1. 案例一、写一个公司分析报告

我想要一份英伟达股票的全面分析,包括:概述:公司概况、关键指标、业绩数据和投资建议财务数据:收入趋势、利润率、资产负债表和现金流分析市场情绪:分析师评级、情绪指标和新闻影响技术分析:价格趋势、技术指标和支撑/阻力水平资产比较:市场份额和与主要竞争对手的财务指标对比价值投资者:内在价值、增长潜力和风险因素投资论点:SWOT 分析和针对不同类型投资者的建议

后端服务未启动

参考资料

LangManus:引领AI自动化的开源多智能体框架

Manus、Tars、Langmanus、Openmanus全体验指南

自己的Manus——完全本地化部署的LangManus

Manus行不行我不知道,但LangManus是真行!

本地部署 LangManus-CSDN博客

震惊全球!开源LangManus复刻天价Manus,本地部署实测,全程薅羊毛,1条命令让电脑自动打工!

 LangManus:引领AI自动化的开源多智能体框架

Manus、Tars、Langmanus、Openmanus全体验指南

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值