目录
一、LangManus简介
LangManus 是一款由开源社区驱动的多智能体 AI 自动化框架,其核心设计理念是通过分层协作的智能体系统,将语言模型与专业工具(如网络搜索、代码执行等)深度结合,实现复杂任务的自动化处理。以下是其核心特性的综合解析:
1、架构设计:分层多智能体协作
LangManus 采用七角色智能体系统,模拟人类团队分工模式,实现任务的高效拆解与协同执行:
- 协调员(Coordinator):接收用户指令并分配任务,是整个工作流的入口。
- 规划员(Planner):针对复杂任务制定执行策略,例如设计加权计算公式或拆分多步骤流程。
- 研究员(Researcher):通过集成 Tavily API 和 Jina 神经搜索技术,实现精准的网络数据抓取与语义检索。
- 程序员(Coder):支持 Python 和 Bash 脚本的实时生成与执行,可直接调用数据分析库(如 Pandas)进行运算。
- 浏览器(Browser):基于 Playwright 实现自动化网页操作,包括点击、滚动、表单填写等交互行为。
- 主管(Supervisor):实时监控任务进度,动态调整智能体协作流程。
- 报告员(Reporter):整合执行结果生成结构化报告,支持 Markdown 和可视化图表输出。
2、核心技术优势
- 三层 LLM 系统
• 推理层:解析复杂指令(如权重设计);
• 基础层:处理常规文本生成;
• 视觉层:分析图像内容(如截图理解)。 - 动态决策引擎
采用模块化设计,支持智能体独立训练与扩展,通过“关键帧”机制编排动作(如 API 调用、代码生成)。 - 零样本跨领域适应
基于多模态预训练(代码、文档、日志数据),无需微调即可快速适应新场景。 - 透明化执行追踪
提供思维链日志和实时状态监控界面,用户可随时介入调整任务流程。
3、工具与生态集成
• 搜索工具:Tavily API 实现毫秒级网络检索,Jina 支持语义化内容提取。
代码环境**:内置 Python REPL 和 UV 包管理器,兼容主流数据分析库。
• 模型兼容:支持 Qwen、DeepSeek R1 等国产模型,同时适配 OpenAI 接口。
• 可视化界面:提供 Web UI 监控任务流程图与智能体协作状态。
4、典型应用场景
- 企业效率工具
• 自动化生成周报(连接 Confluence、Jira 等系统);
• 智能客服系统(基于知识库实时生成技术答疑)。 - 开发者工具
• 一键部署 Web 应用(生成前后端代码并托管至云服务器);
• GitHub 竞品分析(抓取项目数据生成技术栈对比报告)。 - 科研与商业分析
• 文献综述自动化(收集并总结领域论文);
• 市场趋势报告生成(抓取竞争对手数据并可视化)。
5、与同类框架的差异化
相较于 Manus(商业化产品)等竞品,LangManus 的核心优势在于:
• 开源社区驱动:MIT 协议允许二次开发,已吸引超 3000 GitHub Star;
• 国产模型适配:深度集成通义千问、DeepSeek 等本土大模型;
• 全链路工具链:从数据采集到报告生成实现闭环,减少人工干预。
6、总结
LangManus 通过多智能体协作架构和开源生态,正在重塑 AI 自动化任务的执行范式。其设计理念不仅提升了复杂任务的处理效率(如某案例中企业报告生成速度提升 40%),提供了高度可扩展的技术底座。随着国产大模型生态的完善,LangManus 或将成为 AI 自动化领域的标杆框架。
二、基础环境准备
1. 克隆仓库
# 后端核心项目
git clone https://github.com/zeus-maker/langmanus.git
cd langmanus
# 前端界面(可选)
git clone https://github.com/zeus-maker/langmanus-web.git
cd langmanus-web
2. 安装依赖工具
• Python 3.12+:需通过 Miniconda 或 pyenv 管理
• uv 包管理器(替代 pip):
curl -LsSf https://astral.sh/uv/install.sh | sh # 自动安装
• Node.js v22.14+:用于前端界面(官网下载)
• pnpm(替代 npm):
npm install -g pnpm@latest-10
三、后端部署
1. 安装依赖
cd langmanus
# 安装Python依赖
uv sync
# 安装浏览器内核
uv run playwright install chromium
2. 配置环境变量
复制 .env.example
为 .env
,按需修改以下关键配置:
# LLM Environment variables
# 推理模型(需支持复杂任务)
REASONING_API_KEY=sk-xxx
REASONING_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
REASONING_MODEL=qwq-plus
# 基础模型(简单生成任务)
BASIC_API_KEY=sk-xxx
BASIC_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
BASIC_MODEL=qwen-max-latest
# 视觉模型(需支持图像识别)
VL_API_KEY=sk-xxx
VL_BASE_URL=https://dashscope.aliyuncs.com/compatible-mode/v1
VL_MODEL=qwen2.5-vl-72b-instruct
# Application Settings
DEBUG=True
APP_ENV=development
# Add other environment variables as needed
# 搜索API(必填)
TAVILY_API_KEY=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
# 浏览器配置
CHROME_INSTANCE_PATH=/Applications/Google Chrome.app/Contents/MacOS/Google Chrome # 可选,Chrome 可执行文件路径
CHROME_HEADLESS=False # 可选,默认是 False
CHROME_PROXY_SERVER=http://127.0.0.1:10809 # 可选,默认是 None
CHROME_PROXY_USERNAME= # 可选,默认是 None
CHROME_PROXY_PASSWORD= # 可选,默认是 None
https://bailian.console.aliyun.com/#/home
sk-f8a6bb0d68eb417db0879b982ff9908a
tvly-dev-xxx
3. 启动后端服务
uv run server.py # 默认端口8000
4、快速开始
# 克隆仓库
git clone https://github.com/langmanus/langmanus.git
cd langmanus
# 用uv创建并激活虚拟环境
uv python install 3.12
uv venv --python 3.12
source .venv/bin/activate # Windows系统使用: .venv\Scripts\activate
# 安装依赖
uv sync
# 配置环境
cp .env.example .env
# 编辑 .env 文件,填入你的 API 密钥
# 运行项目
uv run main.py
四、前端部署(可选)
1. 安装依赖
cd langmanus-web
# 淘宝镜像源[1,4,6](@ref)
npm config set registry https://registry.npmmirror.com
npm install -g pnpm@latest-10
pnpm install
2. 配置API地址
复制 .env.example
为 .env
,设置后端地址:
NEXT_PUBLIC_API_URL=http://localhost:8000
3. 启动前端界面
# 访问 http://localhost:3000
pnpm dev
五、模型服务配置建议
-
本地部署方案
推荐使用 Ollama 运行量化模型(如 qwq3bit),节省显存且响应更快。 - 云端模型接入
支持硅基流动、DeepSeek、通义千问等国产模型,需在对应平台申请 API 密钥。
六、常见问题解决
- 依赖安装失败
使用清华镜像加速:export UV_DEFAULT_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
- Playwright 浏览器安装超时
手动下载 Chromium 并指定路径:
uv run playwright install --with-deps chromium
- 模型调用报错
检查.env
中模型是否支持工具调用(需带tools
标签),视觉模型需同时支持vision
功能。
七、应用场景示例
• 自动化报告生成:输入任务描述,系统自动完成数据采集、分析及可视化
• 企业级私密部署:结合 Docker 和 AWS Graviton 实现高性能私有化方案
更多配置细节可参考 GitHub 官方文档 或社区讨论。
1. 案例一、写一个公司分析报告
我想要一份英伟达股票的全面分析,包括:概述:公司概况、关键指标、业绩数据和投资建议财务数据:收入趋势、利润率、资产负债表和现金流分析市场情绪:分析师评级、情绪指标和新闻影响技术分析:价格趋势、技术指标和支撑/阻力水平资产比较:市场份额和与主要竞争对手的财务指标对比价值投资者:内在价值、增长潜力和风险因素投资论点:SWOT 分析和针对不同类型投资者的建议
后端服务未启动
参考资料
Manus、Tars、Langmanus、Openmanus全体验指南