1. 工具 :pycharm专业版
如果你已经下载,在help->about查看是不是专业版
如果没有,没啥好说的,微信搜素一大堆,百度云下载...建议去吃口饭
2.平台:AutoDL
AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL
登录-充值-点开算力市场
选择合适显卡租用即可,点击“一卡可租”,选什么这东西仁者见仁,也看课题组给不给报销
框架看你所求,或可像我这样选择,到时候再根据具体情况去安装包,点击“立即创建”
然后进入下面界面,之后复制出登录指令与密码
3.连接:pycharm使用AutoDL的GPU
(我的pycharm通过插件使用的中文版,所以描述多为中文,如果你的是英文版,可以找到我的其他博客中讲到如何修改为中文版,几秒钟的事情,当然也可以对应的去找完全没有问题)
文件->设置->python解释器->添加解释器,进入下面界面
点击,填写复制下来的登录指令与密码信息
比如:ssh -p 43569 root@region-41.seetacloud.com 便对应下图,(额,顺便说一下是填你复制下来的,不是直接填下图上的内容)
下一步,填写密码,如果出现下面左图的情况,点击确定就好,然后输入你复制下来的密码
下一步,然后没出现红字基本就是成功了
点击下一步,你会看到如下界面
下面你需要修改几个地方,系统解释器,基础解释器,同步文件夹,取消勾选“自动上传”,修改为下图的样子,这里稍微多说一下:似乎系统解释器不是很建议,但是似乎大家都是这么做的,我在后面又设置的虚拟环境,所以过程若有问题大佬还请指教,我会对应修改,谢谢[握手]!
其中同步文件夹这里,点击出现的两个路径即为“本地”与“服务器”文件交互,本地上传或者下载的两边默认文件夹,我们需要上传或者下载的就去对应位置找。
点击确认,这样我们就创建好了
我们可以查看下“远程主机”,工具->部署->浏览远程主机,这个东西大概在右侧上方或者下方
或者从工具->部署->配置->映射
以上就完成连接工作,写到这,小歇一会!!!
发现了个小问题,“部署路径”建议修改为“autodl-main/原始项目名”,直接修改然后点击确定即可
4.上传文件
在上传文件和配置环境之前,请先设置为无卡开机模型,需要在AutoDL的控制台先关机,再打开,这样可以节省开销。
前面取消了自动上传,我们只须选择需要的文件或者文件夹手动上传即可,文件包含数据或者py文件。比如我要上传某个.csv或者.py文件,右键->部署->上传到
然后你会发现,自动上传到对应位置,包括路径也是完全统一,而非只是把.csv文件上传,这也是“映射”的含义,映射位置可以随时在部署中修改,此处不赘述。
其他无论是删除,下载,甚至是打开文件,都不难理解,如果直接在远程主机上修改要记得及时上传。
5.配置环境
打开终端,点击对应远程主机
然后,输入>>“echo $0” >>“conda init bash” 进入到base中,这里是参考使用PyCharm在AutoDL远程服务器上运行代码 - 知乎 (zhihu.com)
然后输入下面,进入到根目录
cd autodl-tmp/"你的项目名"
然后就是正常配置环境的常规操作了,下面有些避不开的指令
1. conda create -n pytorch python=3.8
2. conda activate pytorch
3. conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
如果还有问题,建议换源,可以看看这位大佬的博客远程GPU服务器Autodl搭建Pytorch环境_服务器配置pytorch环境-CSDN博客
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --set show_channel_urls yes
6.运行代码
比如你的主程序入口是main.py,那么在终端输入以下代码即可,至于是否能进行debug,目前还在尝试,如果可以我会进行补充。
python main.py
好了,本篇内容到此结束。
最后,苦于无此路开路师兄师姐,故啥都得自己琢磨,但上网查询经常学到“过多”的知识,浪费时间,不说废话系列记录我的实现过程,当然可能这并不是最优解,但是可以解决大部分问题,帮兄弟们节约工具学习的时间,专注于自己的科研,言尽于此,多的一点也不讲,可能我也不咋会。
码字不易,希望各位看官多多点赞支持。