2)Python模块:scipy

不错的教程   英文版

Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。

scipy.cluster向量计算/Kmeans
scipy.constants物理和数学常量
scipy.fftpack傅立叶变换
     快速傅立叶变换(FFT),是快速计算序列的离散傅立叶变换(DFT)或其逆变换的方法。FFT会通过把DFT矩阵分解为稀疏因子之积来快速计算此类变换。
    fftfreq():生成样本序列fft():计算快速傅立叶变换
scipy.integrate积分程序
scipy.interpolate插值
scipy.io数据输入输出
     savemat  loadmat
scipy.linalg线性代数程序
scipy.ndimagen维图像包
scipy.odr正交距离回归
scipy.optimize优化
    函数最值、曲线拟合和求根的算法
    fmin_bfgs(f,0)   brute(f,(grid,))   fminbound(f,a,b)   anneal模拟退火   fsolve(f,x)  curve_fit()非线性最小二乘拟合  leatsq()最小二乘  
  github   optimize类源码
import numpy as np
from scipy.optimize import leastsq
import matplotlib.pyplot as plt

#训练数据
Xi = np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78])
Yi = np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05])

#定义拟合函数形式
def func(p,x):
    k,b = p
    return k*x+b

#定义误差函数
def error(p,x,y,s):
    print(s)
    return func(p,x)-y

#随机给出参数的初始值
p = [10,2]

#使用leastsq()函数进行参数估计
s = '参数估计次数'
Para = leastsq(error,p,args=(Xi,Yi,s))
k,b = Para[0]# 获得拟合线的k,b
#定义拟合函数图形
def func(x,p):
    A,k,theta = p
    return A*np.sin(2*np.pi*k*x+theta)

#定义误差函数
def error(p,x,y):
    return y-func(x,p)

#生成训练数据
#随机给出参数的初始值
p0 = [10,0.34,np.pi/6]
A,k,theta = p0
x = np.linspace(0,2*np.pi,1000)
#随机指定参数

y0 = func(x,[A,k,theta])
#randn(m)从标准正态分布中返回m个值,在本例作为噪声
y1 = y0 + 2*np.random.randn(len(x))

#进行参数估计
Para = leastsq(error,p0,args=(x,y1))
A,k,theta = Para[0]
  
scipy.signal信号处理
scipy.sparse稀疏矩阵
scipy.spatial空间数据结构和算法
scipy.special一些特殊的数学函数
    函数  贝塞尔函数   椭圆函数。。。。
    special库中的特殊函数都是超越函数,所谓超越函数是指变量之间的关系不能用有限次加、减、乘、除、乘方、开方 运算表示的函数。
scipy.stats统计

scipy.misc

  imread  imsave  lena()  

 


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值