Gronwall 不等式
维基百科和百度百科上具有对 Gronwall 不等式的描述,但是有点凌乱,为了方便查询,我整理了一份干净的。
Gronwall 引理是对满足一定微分不等式的一个实变量的(负)函数的基本估计。引理广泛用于研究演化问题(例如偏微分方程和常微分方程,连续动力系统)以限制依赖于时间的有界量的数学领域。
不等式的最基本形式如下。
定理一
令
ϕ
:
[
0
,
T
]
→
R
\phi:[0, T] \rightarrow \mathbb{R}
ϕ:[0,T]→R是一个非负可微函数,且存在一个常数
C
C
C使得,
ϕ
′
(
t
)
≤
C
ϕ
(
t
)
for all
t
∈
[
0
,
T
]
\phi^{\prime}(t) \leq C \phi(t) \quad \text { for all } t \in[0, T]
ϕ′(t)≤Cϕ(t) for all t∈[0,T]
那么
ϕ
(
t
)
≤
e
C
t
ϕ
(
0
)
for all
t
∈
[
0
,
T
]
\phi(t) \leq e^{C t} \phi(0) \quad \text { for all } t \in[0, T]
ϕ(t)≤eCtϕ(0) for all t∈[0,T]
一个更一般的版本是,若 ϕ ′ ( t ) ≤ C ( t ) ϕ ( t ) \phi^{\prime}(t) \leq C(t) \phi(t) ϕ′(t)≤C(t)ϕ(t) ( C C C是个非负可积函数),则
ϕ ( t ) ≤ ϕ ( 0 ) exp ( ∫ 0 t C ( τ ) d τ ) \phi(t) \leq \phi(0) \exp \left(\int_{0}^{t} C(\tau) d \tau\right) ϕ(t)≤ϕ(0)exp(∫0tC(τ)dτ)
这里可微的条件通常是可以放宽的,因为一般不会给你 ϕ \phi ϕ是可微的条件,或者只告诉你是若可微的。比如说, ϕ \phi ϕ可以是满足:
- 绝对连续,此时上面的条件对于 t t t一般是几乎处处成立的。
- 仅仅是有界变差函数。
上面避免上面提到的尴尬,即 ϕ \phi ϕ给得条件比较弱,所以我们有了以下广为流行的积分版本的Gronwall引理。
定理二
假定
ϕ
:
[
0
,
T
]
→
R
\phi:[0, T] \rightarrow \mathbb{R}
ϕ:[0,T]→R非负可测,
C
:
[
0
,
T
]
→
R
C:[0, T] \rightarrow \mathbb{R}
C:[0,T]→R 非负可积,常数
B
≥
0
B \geq 0
B≥0 ,且
ϕ
(
t
)
≤
B
+
∫
0
t
C
(
τ
)
ϕ
(
τ
)
d
τ
for all
t
∈
[
0
,
T
]
\phi(t) \leq B+\int_{0}^{t} C(\tau) \phi(\tau) d \tau \quad \text { for all } t \in[0, T]
ϕ(t)≤B+∫0tC(τ)ϕ(τ)dτ for all t∈[0,T]
那么
ϕ
(
t
)
≤
B
exp
(
∫
0
t
C
(
τ
)
d
τ
)
\phi(t) \leq B \exp \left(\int_{0}^{t} C(\tau) d \tau\right)
ϕ(t)≤Bexp(∫0tC(τ)dτ)
对于所有的
t
∈
[
0
,
T
]
t \in[0, T]
t∈[0,T]。
这里的 B B B也可以推广到和时间相关,则我们有如下的 Bellman-Gronwall 不等式。
定理三
假定
ϕ
,
B
:
[
0
,
T
]
→
R
\phi, B:[0, T] \rightarrow \mathbb{R}
ϕ,B:[0,T]→R 非负可测,
C
:
[
0
,
T
]
→
R
C:[0, T] \rightarrow \mathbb{R}
C:[0,T]→R非负可积,且
ϕ
(
t
)
≤
B
(
t
)
+
∫
0
t
C
(
τ
)
ϕ
(
τ
)
d
τ
for all
t
∈
[
0
,
T
]
\phi(t) \leq B(t)+\int_{0}^{t} C(\tau) \phi(\tau) d \tau \quad \text { for all } t \in[0, T]
ϕ(t)≤B(t)+∫0tC(τ)ϕ(τ)dτ for all t∈[0,T]
那么
ϕ
(
t
)
≤
B
(
t
)
+
∫
0
t
B
(
s
)
C
(
s
)
exp
(
∫
s
t
C
(
τ
)
d
τ
)
d
s
\phi(t) \leq B(t)+\int_{0}^{t} B(s) C(s) \exp \left(\int_{s}^{t} C(\tau) d \tau\right) d s
ϕ(t)≤B(t)+∫0tB(s)C(s)exp(∫stC(τ)dτ)ds
对于所有的
t
∈
[
0
,
T
]
t \in[0, T]
t∈[0,T]。
这里的 B ( t ) B(t) B(t)是个常数的话,就退化成了定理二。
注意到,上述的这些结论都是sharp的,也就是说,如果条件中取到等号,那么结论中也就取到等号。
定理三结论取到等号,就变成了如下常微分方程的解:
ϕ ′ ( t ) = B ′ ( t ) + C ϕ ( t ) \phi^{\prime}(t)=B^{\prime}(t)+C \phi(t) ϕ′(t)=B′(t)+Cϕ(t),初值为 ϕ ( 0 ) = B ( 0 ) \phi(0)=B(0) ϕ(0)=B(0)。
参考文献
- [Am] H. Amann, “Ordinary differential equations. An introduction to nonlinear analysis.” de Gruyter Studies in Mathematics, 13 . Walter de Gruyter & Co., Berlin, 1990 .
- [Gr] T. H. Gronwall, “Note on the derivatives with respect to a parameter of the solutions of a system of differential equations”, Ann. of Math. 20 (2): 292 − 296 292-296 292−296 (1919)
- [Ha] P. Hartman, “Ordinary differential equations”, Birkhäuser (1982),
- [Pet] I.G. Petrovskii, “Ordinary differential equations”, Prentice-Hall (1966) (Translated from Russian)