波动方程初值问题能量不等式的证明
Gronwall 不等式
若非负函数 G ( τ ) G(\tau) G(τ) 在 [ 0 , T ] [0,T] [0,T] 上连续可微, G ( 0 ) = 0 G(0)=0 G(0)=0,且对 τ ∈ [ 0 , T ] \tau\in[0,T] τ∈[0,T]满足 d G ( τ ) d τ ≤ C G ( τ ) + F ( τ ) \frac{dG(\tau)}{d\tau}\leq CG(\tau)+F(\tau) dτdG(τ)≤CG(τ)+F(τ) 其中 C C C 为常数且 C > 0 C>0 C>0, F ( τ ) F(\tau) F(τ) 是 [ 0 , T ] [0,T] [0,T] 上不减的非负可积函数,
那么有:
d G ( τ ) d τ ≤ e C τ F ( τ ) \frac{dG(\tau)}{d\tau}\leq e^{C\tau}F(\tau) dτdG(τ)≤eCτF(τ) G ( τ ) ≤ C − 1 ( e C τ − 1 ) F ( τ ) G(\tau)\leq C^{-1}(e^{C\tau}-1)F(\tau) G(τ)≤C−1(eCτ−1)F(τ)
常用的替换技巧
u t u t t = 1 2 ⋅ 2 u t ⋅ u t t = 1 2 ( u t 2 ) t u_{t}u_{tt}=\frac{1}{2}\cdot 2u_{t}\cdot u_{tt}=\frac{1}{2}(u_{t}^2)_t ututt=21⋅2ut⋅utt=21(ut2)t u u t = 1 2 ⋅ 2 u ⋅ u t = 1 2 ( u 2 ) t uu_t=\frac{1}{2}\cdot 2u\cdot u_t =\frac{1}{2}(u^2)_t uut=21⋅2u⋅ut=21(u2)t u u x x = ( u u x ) x − u x 2 = u x 2 + u u x x − u x 2 uu_{xx}=(uu_x)_x-u_x^2=u_x^2+uu_{xx}-u_x^2 uuxx=(uux)x−ux2=ux2+uuxx−ux2 ∵ ( u t u x ) x = u t x u x + u t u x x \because(u_{t}u_{x})_x=u_{tx}u_{x}+u_{t}u_{xx} ∵(utux)x=utxux+utuxx ∴ u t u x x = ( u t u x ) x − u t x u x \therefore u_{t}u_{xx}=(u_{t}u_{x})_x-u_{tx}u_{x} ∴utuxx=(utux)x−utxux
u u u 二阶导函数连续时, u x t = u t x u_{xt}=u_{tx} uxt=utx ∴ u t x u x = 1 2 ( u x 2 ) t = 1 2 ⋅ 2 u x ⋅ u x t = u x u t x \therefore u_{tx}u_{x} = \frac{1}{2}(u_{x}^2)_t=\frac{1}{2}\cdot 2u_{x}\cdot u_{xt}=u_{x}u_{tx} ∴utxux=21(ux2)t=21⋅2ux⋅uxt=uxutx ∴ u t u x x = ( u t u x ) x − 1 2 ( u x 2 ) t \therefore u_{t}u_{xx}=(u_{t}u_{x})_x-\frac{1}{2}(u_{x}^2)_t ∴utuxx=(utux)x−21(ux2)t
能量不等式证明过程
规定 x x x 增长的方向为正方向,而 G r e e n Green Green 公式曲线积分时,组成梯形区域 K τ K_{\tau} Kτ 边界 ∂ K τ \partial K_{\tau} ∂Kτ 的四条线段按照右手法则,只有 Ω 0 \Omega_0 Ω0 这条线段的方向是与右手法则一致,所以有:
∂ K τ = Ω 0 ∪ ( − Γ τ 2 ) ∪ ( − Ω τ ) ∪ ( − Γ τ 1 ) \partial K_{\tau} =\Omega_0\cup(-\Gamma_{\tau_{2}})\cup(-\Omega_{\tau})\cup(-\Gamma_{\tau_{1}}) ∂Kτ=Ω0∪(−Γτ2)∪(−Ωτ)∪(−Γτ1)
此外,在 ∂ K τ \partial K_{\tau} ∂Kτ 计算曲线积分时,关于 x , t x,t x,t 都积分,但是这两条边 Ω 0 , Ω τ \Omega_0,\Omega_{\tau} Ω0,Ωτ 只在 x x x 方向有增长,而在 t t t 方向无增长,那么这两条线段在计算曲线积分时关于 d t dt dt 的积分项为 0 0 0
待证明的两个不等式:
∫ Ω τ [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∬ K τ f 2 ( x , t ) d x d t ] \int_{\Omega_\tau} \left[u_t^2(x, \tau) + a^2 u_x^2(x, \tau)\right] dx \leq M \left[ \int_{\Omega_0} (\psi^2 + a^2 \varphi_x^2) dx + \iint_{K_\tau} f^2(x,t) dxdt \right] ∫Ωτ[ut2(x,τ)+a2ux2(x,τ)]dx≤M[∫Ω0(ψ2+a2φx2)dx+∬Kτf2(x,t)dxdt] ∬ K τ [ u t 2 ( x , t ) + a 2 u x 2 ( x , t ) ] d x d t ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∬ K τ f 2 ( x , t ) d x d t ] \iint_{K_\tau} \left[u_t^2(x,t) + a^2 u_x^2(x,t)\right] dxdt \leq M \left[ \int_{\Omega_0} (\psi^2 + a^2 \varphi_x^2) dx + \iint_{K_\tau} f^2(x,t) dxdt \right] ∬Kτ[ut2(x,t)+a2ux2(x,t)]dxdt≤M[∫Ω0(ψ2+a2φx2)dx+∬Kτf2(x,t)dxdt]
-
波动方程和能量的关系,在波动方程 ∂ 2 u ∂ t 2 − a 2 ∂ 2 u ∂ x 2 = f \frac{\partial^2 u}{\partial t^2}-a^2\frac{\partial^2 u}{\partial x^2}=f ∂t2∂2u−a2∂x2∂2u=f 两端同乘以 ∂ u ∂ t \frac{\partial u}{\partial t} ∂t∂u 并在区域 K τ K_\tau Kτ 上积分并按照前面的常用替换得: ∬ K τ u t u t t − a 2 u t u x x d x d t = ∬ K τ u t f d x d t \iint_{K_\tau}u_{t}u_{tt}-a^2u_{t}u_{xx}dxdt=\iint_{K_\tau}u_tfdxdt ∬Kτututt−a2utuxxdxdt=∬Kτutfdxdt ∬ K τ 1 2 ( u t 2 + a 2 u x 2 ) t − a 2 ( u t u x ) x d x d t = ∬ K τ u t f d x d t \iint_{K_\tau}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)_t-a^2(u_tu_{x})_{x}dxdt=\iint_{K_\tau}u_tfdxdt ∬Kτ21(ut2+a2ux2)t−a2(utux)xdxdt=∬Kτutfdxdt
-
应用下面这个 Green \text{Green} Green 公式将等式左边也就是时空域上的积分转换为边界上的积分
∬ Ω ∂ P ∂ t + ∂ Q ∂ x d σ = ∮ ∂ Ω − P d x + Q d t \iint_{\Omega}\frac{\partial P}{\partial t}+\frac{\partial Q}{\parti