【小波分析】六、小波分析与非线性逼近(上)

【小波分析】六、小波分析与非线性逼近(上)

神经网络与小波分析相结合, 分形几何与小波分析相结合是国际上研究的热点之一。基于神经网络的智能处理技术, 模糊计算、进化计算与神经网络结合的研究, 没有小波理论的嵌人很难取得突破。非线性科学的研究正呼唤小波分析, 也许非线性小波分析是解决非线性科学问题的理想工具。

对偶

回忆一下,在线性代数中,如果给定 R n \mathbb{R}^n Rn 空间的一组基,不妨设为 e k \mathbf {e}_k ek,每个 k k k 对应于一个 n n n 维的列向量,它们不必是单位向量,也不必是正交的。那么,给定空间的一个向量 v \mathbf v v,它在每个 e k \mathbf{e}_k ek 上的系数,就等于 v \mathbf{v} v e k \mathbf{e}_k ek 对偶上的内积。即
v = ∑ k = 1 n ( v , e ~ k ) e k \mathbf{v} = \sum_{k=1}^{n} (\mathbf{v},\mathbf {\tilde {e}}_k) \mathbf{e}_k v=k=1n(v,e~k)ek

其中, ( ⋅ , ⋅ ) (\cdot,\cdot) (,) 表示向量内积。 e ~ k \mathbf {\tilde {e}}_k e~k 表示 e k \mathbf{e}_k ek 的对偶(在这组基的意义下),即
( e j , e ~ k ) = δ j , k . (\mathbf{e}_j,\mathbf {\tilde {e}}_k) = \delta_{j,k}. (ej,e~k)=δj,k.

δ \delta δ 表示 Kronecker delta 函数, j = k j=k j=k 为 1, j ≠ k j\neq k j=k 为零。

理解一下,我们要找一个向量在一组基下的表示,无非就是要找到这组基张成的矩阵的逆,所谓的对偶,其实本质上反映的就是基向量张成的空间的逆。当基函数是标准正交基的时候,它张成的矩阵是个酉矩阵,那么它的逆本质上就等同于自身,此时, e ~ k = e k \mathbf {\tilde {e}}_k=\mathbf{e}_k e~k=ek

把它推广到函数空间,也是一样的。在 L 2 ( R ) L^2(\mathbb{R}) L2(R) 空间中定义对偶 φ ~ k \tilde{\varphi}_k φ~k

< φ j , φ ~ k > : = ∫ R φ j φ ~ k d x = δ j k <\varphi_j, \tilde{\varphi}_k> := \int_{\mathbb{R}} \varphi_j \tilde{\varphi}_k \mathrm{d} x=\delta_{j k} <φj,φ~k>:=Rφjφ~kdx=δjk

那么,任意的 f ∈ L 2 ( R ) f \in L^2(\mathbb{R}) fL2(R),我们有

f = ∑ k = 1 n < f , φ ~ k > φ k . f = \sum_{k=1}^{n} <f, \tilde{\varphi}_k> \varphi_k. f=k=1n<f,φ~k>φk.

非常干净,非常简洁的表示。在理论分析上很有用。

插值空间

这里直接给出插值空间 ( X , Y ) θ , q (X, Y)_{\theta, q} (X,Y)θ,q 的定义,它是满足以下半范有限的所有的 f f f 的集合:
∣ f ∣ ( X , Y ) θ , q : = { ( ∫ 0 ∞ [ t − θ K ( f , t ) ] q d t t ) 1 / q , 0 < q < ∞ sup ⁡ t > 0 t − θ K ( f , t ) , q = ∞ |f|_{(X, Y)_{\theta, q}}:=\left\{\begin{array}{ll} \left(\int_{0}^{\infty}\left[t^{-\theta} K(f, t)\right]^{q} \frac{\mathrm{d} t}{t}\right)^{1 / q}, & 0<q<\infty \\ \sup _{t>0} t^{-\theta} K(f, t), & q=\infty \end{array}\right. f(X,Y)θ,q:={(0[tθK(f,t)]qtdt)1/q,supt>0tθK(f,t),0<q<q=

这里的 K K K 泛函定义为,
K ( f , t ) : = K ( f , t ; X , Y ) : = inf ⁡ g ∈ Y ∥ f − g ∥ X + t ∣ g ∣ Y K(f, t):=K(f, t ; X, Y):=\inf _{g \in Y}\|f-g\|_{X}+t|g|_{Y} K(f,t):=K(f,t;X,Y):=gYinffgX+tgY
这里的 Y Y Y 是连续地嵌入到 X X X 里面,即
Y ⊂ X  且 ∥ ⋅ ∥ X ≤ C ∥ ⋅ ∥ Y Y \subset X \text { 且}\|\cdot\|_{X} \leq C\|\cdot\|_{Y} YX XCY

平移不变空间

对于 L 2 ( R d ) L_{2}\left(\mathbb{R}^{d}\right) L2(Rd) 上的一个紧支函数 φ \varphi φ ,我们可以定义其生成的 PSI(principal shift invariant) 空间 S : = S ( φ ) \mathcal{S}:=\mathcal{S}(\varphi) S:=S(φ),它表示 φ \varphi φ 的平移的所有有限线性组合构成的集合的闭包。同样地,我们定义 S k : = S k ( φ ) \mathcal{S}_{k}:=\mathcal{S}_{k}(\varphi) Sk:=Sk(φ) S ( φ ) \mathcal{S}(\varphi) S(φ) 2 k 2^k 2k 压缩。那么,我们可以定义逼近误差,
E k ( f ) : = E k ( f ) 2 : = inf ⁡ S ∈ S k ∥ f − S ∥ L 2 ( R d ) , k = 0 , 1 , … E_{k}(f):=E_{k}(f)_{2}:=\inf _{S \in \mathcal{S}_{k}}\|f-S\|_{L_{2}\left(\mathbb{R}^{d}\right)}, \quad k=0,1, \ldots Ek(f):=Ek(f)2:=SSkinffSL2(Rd),k=0,1,

定义 r r r 阶 Strang-Fix 条件如下,
φ ^ ( 0 ) ≠ 0 ,  and  D j φ ^ ( 2 k π ) = 0 , k ∈ Z d \ { 0 } , ∣ j ∣ < r \hat{\varphi}(0) \neq 0, \text { and } D^{j} \hat{\varphi}(2 k \pi)=0, \quad k \in \mathbb{Z}^{d} \backslash\{0\},|j|<r φ^(0)=0, and Djφ^(2kπ)=0,kZd\{0},j<r

我们引入 Jackson 不等式,对于所有 Sobolev 空间 W r ( L 2 ( R d ) ) W^{r}\left(L_{2}\left(\mathbb{R}^{d}\right)\right) Wr(L2(Rd)) 中的函数 f f f,有

E k ( f ) ≤ C 2 − k r ∣ f ∣ W r ( L 2 ( R d ) ) , k = 0 , 1 , … E_{k}(f) \leq C 2^{-k r}|f|_{W^{r}\left(L_{2}\left(\mathbb{R}^{d}\right)\right)}, \quad k=0,1, \ldots Ek(f)C2krfWr(L2(Rd)),k=0,1,

相对应的 Berstein 不等式是,
∣ S ∣ W r ( L 2 ( R d ) ) ≤ C 2 k r ∥ S ∥ L 2 ( R d ) , S ∈ S k |S|_{W^{r}\left(L_{2}\left(\mathbb{R}^{d}\right)\right)} \leq C 2^{k r}\|S\|_{L_{2}\left(\mathbb{R}^{d}\right)}, \quad S \in \mathcal{S}_{k} SWr(L2(Rd))C2krSL2(Rd),SSk

那么我们可以给出逼近空间的刻画,
A q α ( L 2 ( R d ) ) = B q α ( L 2 ( R d ) ) , 0 < α < r , 0 < q ≤ ∞ \mathcal{A}_{q}^{\alpha}\left(L_{2}\left(\mathbb{R}^{d}\right)\right)=B_{q}^{\alpha}\left(L_{2}\left(\mathbb{R}^{d}\right)\right), \quad 0<\alpha<r, 0<q \leq \infty Aqα(L2(Rd))=Bqα(L2(Rd)),0<α<r,0<q

这个的证明利用到了 r r r 阶光滑模量和 K K K 泛函的等价性可以得到。其中, A q α : = A q α ( X , ( X n ) ) \mathcal{A}_{q}^{\alpha}:=\mathcal{A}_{q}^{\alpha}\left(X,\left(X_{n}\right)\right) Aqα:=Aqα(X,(Xn)) (子空间序列 X n ⊂ X X_{n} \subset X XnX)是所有满足如下半范数有界的 f f f 的集合:
∣ f ∣ A q α : = { ( ∑ n = 1 ∞ [ n α E n ( f ) X ] q 1 n ) 1 / q , 0 < q < ∞ sup ⁡ n ≥ 1 n α E n ( f ) X , q = ∞ |f|_{\mathcal{A}_{q}^{\alpha}}:=\left\{\begin{array}{ll} \left(\sum_{n=1}^{\infty}\left[n^{\alpha} E_{n}(f)_{X}\right]^{q} \frac{1}{n}\right)^{1 / q}, & 0<q<\infty \\ \sup _{n \geq 1} n^{\alpha} E_{n}(f)_{X}, & q=\infty \end{array}\right. fAqα:={(n=1[nαEn(f)X]qn1)1/q,supn1nαEn(f)X,0<q<q=
逼近空间范数的定义,是通过函数与一族子空间的某种距离来刻画的。若我们用函数的点点光滑性来定义范数,我们就可以得到 Besov 空间,即如下定义的半范数是有限的:
∣ f ∣ B q α ( L p ( Ω ) ) : = { ( ∫ 0 ∞ [ t − α ω r ( f , t ) p ] q d t t ) 1 / q , 0 < q < ∞ sup ⁡ t > 0 t − α ω r ( f , t ) p , q = ∞ |f|_{B_{q}^{\alpha}\left(L_{p}(\Omega)\right)}:=\left\{\begin{array}{ll} \left(\int_{0}^{\infty}\left[t^{-\alpha} \omega_{r}(f, t)_{p}\right]^{q} \frac{\mathrm{d} t}{t}\right)^{1 / q}, & 0<q<\infty \\ \sup _{t>0} t^{-\alpha} \omega_{r}(f, t)_{p}, & q=\infty \end{array}\right. fBqα(Lp(Ω)):={(0[tαωr(f,t)p]qtdt)1/q,supt>0tαωr(f,t)p,0<q<q=
其中, r r r 阶光滑模量的定义如下,
ω r ( f , t ) p : = sup ⁡ ∣ h ∣ ≤ t ∥ Δ h r ( f , ⋅ ) ∥ L p ( Ω ) \omega_{r}(f, t)_{p}:=\sup _{|h| \leq t}\left\|\Delta_{h}^{r}(f, \cdot)\right\|_{L_{p}(\Omega)} ωr(f,t)p:=htsupΔhr(f,)Lp(Ω)
Δ h r \Delta_{h}^{r} Δhr 是步长为 h h h r r r 阶算子,

Δ h r ( f , x ) : = ∑ k = 0 r ( − 1 ) r − k ( r k ) f ( x + k h ) . \Delta_{h}^{r}(f, x):=\sum_{k=0}^{r}(-1)^{r-k}\left(\begin{array}{l} r \\ k \end{array}\right) f(x+k h) . Δhr(f,x):=k=0r(1)rk(rk)f(x+kh).

逼近空间的这种取法应该怎么理解?因为 Jackson 不等式和 Bernstein 不等式是被满足的,在这个先决条件下,由一些基本的理论,我们知道逼近空间可以取为插值空间,插值空间里面的 K 泛函换成跟其等价的 r 阶光滑模量,就得到逼近空间其实就是 Besov 空间。

多分辨分析和小波分解

上述定义的 S k \mathcal{S}_{k} Sk 如果有包含关系,即 S k ⊂ S k + 1 \mathcal{S}_{k} \subset \mathcal{S}_{k+1} SkSk+1,那么,本质上 S k \mathcal{S}_{k} Sk 就构成了一个多分辨分析。对于尺度函数,我们定义它的对偶为,
∫ R φ ( x − j ) φ ~ ( x − k ) d x = δ j k \int_{\mathbb{R}} \varphi(x-j) \tilde{\varphi}(x-k) \mathrm{d} x=\delta_{j k} Rφ(xj)φ~(xk)dx=δjk
φ \varphi φ 可以写成 S 1 \mathcal{S}_{1} S1 空间中的基的线性组合,
φ ( x ) = ∑ k ∈ Z c k φ ( 2 x − k ) \varphi(x)=\sum_{k \in \mathbb{Z}} c_{k} \varphi(2 x-k) φ(x)=kZckφ(2xk)
因为 φ \varphi φ 是紧支的,这意味着只有有限个 c k c_k ck 不为零。这个系数一般就称为低通滤波器系数。类似地,我们也可以定义出 C ~ k \tilde{C}_{k} C~k

定义投影算子,
P f : = ∑ j ∈ Z ⟨ f , φ ~ ( ⋅ − j ) ⟩ φ ( ⋅ − j ) P f:=\sum_{j \in \mathbb{Z}}\langle f, \tilde{\varphi}(\cdot-j)\rangle \varphi(\cdot-j) Pf:=jZf,φ~(j)φ(j)
注意到这里的系数是和对偶做内积。

类似于多分辨分析中我们介绍得小波的构造,我们可以构造出小波如下,
ψ ( x ) = ∑ k ∈ Z d k φ ~ ( 2 x − k ) , d k : = ( − 1 ) k c ~ 1 − k . \psi(x)=\sum_{k \in \mathbb{Z}} d_{k} \tilde{\varphi}(2 x-k), \quad d_{k}:=(-1)^{k} \tilde{c}_{1-k} . ψ(x)=kZdkφ~(2xk),dk:=(1)kc~1k.

它的平移构成的空间,我们记为 W W W,那么,函数 f f f W W W 上的投影就是,
Q f = ∑ j ∈ Z ⟨ f , ψ ~ ( ⋅ − j ) ⟩ ψ ( ⋅ − j ) Q f=\sum_{j \in \mathbb{Z}} \langle f, \tilde{\psi}(\cdot-j)\rangle \psi(\cdot-j) Qf=jZf,ψ~(j)ψ(j)

那么,我们可以直接写出函数的小波分解,
f = ∑ k ∈ Z ∑ j ∈ Z 2 k ⟨ f , ψ ~ ( 2 k ⋅ − j ) ⟩ ψ ( 2 k ⋅ − j ) f=\sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} 2^{k}\left\langle f, \tilde{\psi}\left(2^{k} \cdot-j\right)\right\rangle \psi\left(2^{k} \cdot-j\right) f=kZjZ2kf,ψ~(2kj)ψ(2kj)

我们现在考虑多维自变量的情况,对于每个定义在 R d \mathbb{R}^d Rd 上的函数 η \eta η,定义符号,
η I ( x ) : = ∣ I ∣ − 1 / 2 η ( 2 k ⋅ − j ) \eta_{I}(x):=|I|^{-1 / 2} \eta\left(2^{k} \cdot-j\right) ηI(x):=I1/2η(2kj)
这里的 ∣ I ∣ |I| I 表征的是单位立方体变成的体积,本质上体现了函数积分压缩到了原来的几分之几。即 I = 2 − k ( j + Ω ) I=2^{-k}(j+\Omega) I=2k(j+Ω) 其中 Ω : = [ 0 , 1 ] d \Omega:=[0,1]^{d} Ω:=[0,1]d

那么原来的小波分解就可以写为,
f = ∑ I ∈ D c I ( f ) ψ I , c I ( f ) : = ⟨ f , ψ I ⟩ f=\sum_{I \in D} c_{I}(f) \psi_{I}, \quad c_{I}(f):=\left\langle f, \psi_{I}\right\rangle f=IDcI(f)ψI,cI(f):=f,ψI
其中 ψ I \psi_{I} ψI 表示的是 I I I 所代表的小波母函数的伸缩平移。它构成了 L 2 ( R ) L_{2}(\mathbb{R}) L2(R) 空间的一组标准正交基。

那么多维的小波如何构造呢?一个简单的方法是可以通过一维的小波进行构造。令 ψ 0 : = φ , ψ 1 : = ψ \psi^{0}:=\varphi, \psi^{1}:=\psi ψ0:=φ,ψ1:=ψ e = ( e 1 , … , e d ) e=\left(e_{1}, \ldots, e_{d}\right) e=(e1,,ed) 是一个非零的,每个位置上只取 0 和 1 的向量。

ψ e ( x 1 , … , x d ) : = ψ e 1 ( x 1 ) ⋯ ψ e d ( x d ) \psi^{e}\left(x_{1}, \ldots, x_{d}\right):=\psi^{e_{1}}\left(x_{1}\right) \cdots \psi^{e_{d}}\left(x_{d}\right) ψe(x1,,xd):=ψe1(x1)ψed(xd)

那么,同样用 D D D 来表示所有伸缩和平移,那么,
{ ψ I e , I ∈ D , e ∈ E } \left\{\psi_{I}^{e}, \quad I \in D, e \in E\right\} {ψIe,ID,eE}
构成了 L 2 ( R d ) L_{2}\left(\mathbb{R}^{d}\right) L2(Rd) 空间的一组标准正交基。这里的 E E E 表示不含零元素的零幺二进向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值