Pinsker 不等式的简单证明

Pinsker 不等式的简单证明

网上有很多很多关于 Pinsker 不等式的证明方法,但是我没有看到一个用数学归纳法证明的,也没有看到一个不加先验定义的自包含的证明。下面我给出一个关于一个极简的证明。任何的引用请注明本出处。

Pinsker 不等式

请证明如下不等式:
∑ i = 1 n a i ln ⁡ a i b i ≥ ∑ i = 1 n ( a i − b i ) 2 \sum_{i=1}^{n}a_i \ln \frac{a_i}{b_i}\geq \sum_{i=1}^{n}(a_i-b_i)^2 i=1nailnbiaii=1n(aibi)2
此处, a i ≥ 0 , b i ≥ 0 , i = 1 , ⋯   , n a_i\geq 0,b_i\ge 0, i=1,\cdots,n ai0,bi0,i=1,,n,且 ∑ i = 1 n a i = 1 , ∑ i = 1 n b i = 1 \sum_{i=1}^{n}a_i =1,\sum_{i=1}^{n}b_i =1 i=1nai=1,i=1nbi=1

准备工作

引理 1: p 1 , p 2 , q 1 , q 2 p_1,p_2,q_1,q_2 p1,p2,q1,q2都是正实数,那么
p 1 ln ⁡ p 1 q 1 + p 2 ln ⁡ p 2 q 2 ≥ ( p 1 + p 2 ) ln ⁡ p 1 + p 2 q 1 + q 2 p_1 \ln \frac{p_1}{q_1}+p_2 \ln \frac{p_2}{q_2}\geq (p_1+p_2)\ln \frac{p_1+p_2}{q_1+q_2} p1lnq1p1+p2lnq2p2(p1+p2)lnq1+q2p1+p2

证明:

r = p 1 + p 2 q 1 + q 2 r=\frac{p_1+p_2}{q_1+q_2} r=q1+q2p1+p2.
只要证:
p 1 ln ⁡ p 1 r q 1 + p 2 ln ⁡ p 2 r q 2 ≥ 0 p_1 \ln \frac{p_1}{rq_1}+p_2 \ln \frac{p2}{rq_2}\geq 0 p1lnrq1p1+p2lnrq2p20.
容易验证, ln ⁡ x ≥ 1 − 1 x , ∀ x ≥ 0 \ln x \geq 1-\frac{1}{x}, \forall x \geq 0 lnx1x1,x0。则有,
p 1 ln ⁡ p 1 r q 1 + p 2 ln ⁡ p 2 r q 2 ≥ p 1 ( 1 − r q 1 p 1 ) + p 2 ( 1 − r q 2 p 2 ) = p 1 − r q 1 + p 2 − r q 2 ≥ 0 p_1 \ln \frac{p_1}{rq_1}+p_2 \ln \frac{p2}{rq_2}\geq p_1(1-\frac{rq_1}{p_1})+p_2(1-\frac{rq_2}{p_2})=p_1-rq_1+p_2-rq_2\geq 0 p1lnrq1p1+p2lnrq2p2p1(1p1rq1)+p2(1p2rq2)=p1rq1+p2rq20.

引理 2: ∑ i = 1 2 a i ln ⁡ a i b i ≥ ∑ i = 1 2 ( a i − b i ) 2 \sum_{i=1}^{2}a_i \ln \frac{a_i}{b_i}\geq \sum_{i=1}^{2}(a_i-b_i)^2 i=12ailnbiaii=12(aibi)2
此处, a i ≥ 0 , b i ≥ 0 , i = 1 , ⋯   , 2 a_i\geq 0,b_i\ge 0, i=1,\cdots,2 ai0,bi0,i=1,,2,且 a 1 + a 2 = 0 , b 1 + b 2 = 0 a_1+a_2=0, b_1+b_2 = 0 a1+a2=0,b1+b2=0.

证明:
定义 f ( x ) = a 1 ln ⁡ x + a 2 ln ⁡ ( 1 − x ) f(x)=a_1 \ln x + a_2 \ln(1-x) f(x)=a1lnx+a2ln(1x)。则,
f ( a 1 ) − f ( b 1 ) = a 1 ln ⁡ a 1 b 1 + a 2 ln ⁡ a 2 b 2 = ∫ b 1 a 1 f ′ = ∫ b 1 a 1 a 1 x + a a x − 1 = ∫ b 1 a 1 a 1 − x x ( 1 − x ) ≥ 4 ∫ b 1 a 1 a 1 − x = 2 ( a 1 − b 1 ) 2 = ( a 1 − b 1 ) 2 + ( a 2 − b 2 ) 2 f(a_1)-f(b_1)=a_1\ln \frac{a_1}{b_1}+a_2 \ln \frac{a_2}{b_2} =\int_{b_1}^{a_1}f\prime\\ =\int_{b_1}^{a_1}\frac{a_1}{x}+\frac{a_a}{x-1}=\int_{b_1}^{a_1}\frac{a_1-x}{x(1-x)}\\ \geq 4 \int_{b_1}^{a_1}a_1-x=2(a_1-b_1)^2=(a_1-b_1)^2+(a_2-b_2)^2 f(a1)f(b1)=a1lnb1a1+a2lnb2a2=b1a1f=b1a1xa1+x1aa=b1a1x(1x)a1x4b1a1a1x=2(a1b1)2=(a1b1)2+(a2b2)2

证明

数学归纳法证明。
n = 2 n=2 n=2 时成立。
假设当 n = k n=k n=k 时成立,即
∑ i = 1 k a i ln ⁡ a i b i ≥ ∑ i = 1 k ( a i − b i ) 2 \sum_{i=1}^{k}a_i \ln \frac{a_i}{b_i}\geq \sum_{i=1}^{k}(a_i-b_i)^2 i=1kailnbiaii=1k(aibi)2
那么 n = k + 1 n=k+1 n=k+1 时,

a ^ i = a i , b ^ i = b i , i = 1 , ⋯   , k − 1 \hat a_i = a_i,\hat b_i = b_i,i=1,\cdots,k-1 a^i=ai,b^i=bi,i=1,,k1 a ^ k = a k + a k + 1 , b ^ k = b k + b k + 1 \hat a_k=a_k+a_{k+1},\hat b_k=b_k+b_{k+1} a^k=ak+ak+1,b^k=bk+bk+1。则,
∑ i = 1 k + 1 a i ln ⁡ a i b i = ∑ i = 1 k − 1 a i ln ⁡ a i b i + a k ln ⁡ a k b k + a k + 1 ln ⁡ a k + 1 b k + 1 ≥ ∑ i = 1 k − 1 a ^ i ln ⁡ a ^ i b ^ i + ( a k + a k + 1 ) ln ⁡ a k + a k + 1 b k + b k + 1 = ∑ i = 1 k a ^ i ln ⁡ a ^ i b ^ i ≥ ∑ i = 1 k ( a ^ i − b ^ i ) 2 = ∑ i = 1 k − 1 ( a ^ i − b ^ i ) 2 + ( ( a k + a k + 1 ) − ( b k + b k + 1 ) ) 2 ≥ ∑ i = 1 k + 1 ( a i − b i ) 2 \sum_{i=1}^{k+1}a_i \ln \frac{a_i}{b_i}= \sum_{i=1}^{k-1}a_i \ln \frac{a_i}{b_i}+a_k\ln\frac{a_k}{b_k}+a_{k+1}\ln \frac{a_{k+1}}{b_{k+1}}\\ \geq \sum_{i=1}^{k-1}\hat a_i \ln \frac{\hat a_i}{\hat b_i}+(a_k+a_{k+1})\ln \frac{a_k+a_{k+1}}{b_k+b_{k+1}} = \sum_{i=1}^{k}\hat a_i \ln \frac{\hat a_i}{\hat b_i}\geq \sum_{i=1}^{k}(\hat a_i-\hat b_i)^2\\=\sum_{i=1}^{k-1}(\hat a_i-\hat b_i)^2+((a_k+a_{k+1})-(b_k+b_{k+1}))^2 \geq \sum_{i=1}^{k+1}(a_i-b_i)^2 i=1k+1ailnbiai=i=1k1ailnbiai+aklnbkak+ak+1lnbk+1ak+1i=1k1a^ilnb^ia^i+(ak+ak+1)lnbk+bk+1ak+ak+1=i=1ka^ilnb^ia^ii=1k(a^ib^i)2=i=1k1(a^ib^i)2+((ak+ak+1)(bk+bk+1))2i=1k+1(aibi)2

写得不是很严格,但是应该容易看懂。欢迎指教。

在信息论中,Pinsker 不等式以其发明者Mark Semenovich Pinsker 的名字命名,是根据Kullback-Leibler 散度限制总变异距离(或统计距离)的不等式。不等式紧到常数因子为止。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值