Pinsker 不等式的简单证明
网上有很多很多关于 Pinsker 不等式的证明方法,但是我没有看到一个用数学归纳法证明的,也没有看到一个不加先验定义的自包含的证明。下面我给出一个关于一个极简的证明。任何的引用请注明本出处。
Pinsker 不等式
请证明如下不等式:
∑
i
=
1
n
a
i
ln
a
i
b
i
≥
∑
i
=
1
n
(
a
i
−
b
i
)
2
\sum_{i=1}^{n}a_i \ln \frac{a_i}{b_i}\geq \sum_{i=1}^{n}(a_i-b_i)^2
i=1∑nailnbiai≥i=1∑n(ai−bi)2
此处,
a
i
≥
0
,
b
i
≥
0
,
i
=
1
,
⋯
,
n
a_i\geq 0,b_i\ge 0, i=1,\cdots,n
ai≥0,bi≥0,i=1,⋯,n,且
∑
i
=
1
n
a
i
=
1
,
∑
i
=
1
n
b
i
=
1
\sum_{i=1}^{n}a_i =1,\sum_{i=1}^{n}b_i =1
∑i=1nai=1,∑i=1nbi=1。
准备工作
引理 1: p 1 , p 2 , q 1 , q 2 p_1,p_2,q_1,q_2 p1,p2,q1,q2都是正实数,那么
p 1 ln p 1 q 1 + p 2 ln p 2 q 2 ≥ ( p 1 + p 2 ) ln p 1 + p 2 q 1 + q 2 p_1 \ln \frac{p_1}{q_1}+p_2 \ln \frac{p_2}{q_2}\geq (p_1+p_2)\ln \frac{p_1+p_2}{q_1+q_2} p1lnq1p1+p2lnq2p2≥(p1+p2)lnq1+q2p1+p2
证明:
令
r
=
p
1
+
p
2
q
1
+
q
2
r=\frac{p_1+p_2}{q_1+q_2}
r=q1+q2p1+p2.
只要证:
p
1
ln
p
1
r
q
1
+
p
2
ln
p
2
r
q
2
≥
0
p_1 \ln \frac{p_1}{rq_1}+p_2 \ln \frac{p2}{rq_2}\geq 0
p1lnrq1p1+p2lnrq2p2≥0.
容易验证,
ln
x
≥
1
−
1
x
,
∀
x
≥
0
\ln x \geq 1-\frac{1}{x}, \forall x \geq 0
lnx≥1−x1,∀x≥0。则有,
p
1
ln
p
1
r
q
1
+
p
2
ln
p
2
r
q
2
≥
p
1
(
1
−
r
q
1
p
1
)
+
p
2
(
1
−
r
q
2
p
2
)
=
p
1
−
r
q
1
+
p
2
−
r
q
2
≥
0
p_1 \ln \frac{p_1}{rq_1}+p_2 \ln \frac{p2}{rq_2}\geq p_1(1-\frac{rq_1}{p_1})+p_2(1-\frac{rq_2}{p_2})=p_1-rq_1+p_2-rq_2\geq 0
p1lnrq1p1+p2lnrq2p2≥p1(1−p1rq1)+p2(1−p2rq2)=p1−rq1+p2−rq2≥0.
引理 2: ∑ i = 1 2 a i ln a i b i ≥ ∑ i = 1 2 ( a i − b i ) 2 \sum_{i=1}^{2}a_i \ln \frac{a_i}{b_i}\geq \sum_{i=1}^{2}(a_i-b_i)^2 i=1∑2ailnbiai≥i=1∑2(ai−bi)2
此处, a i ≥ 0 , b i ≥ 0 , i = 1 , ⋯ , 2 a_i\geq 0,b_i\ge 0, i=1,\cdots,2 ai≥0,bi≥0,i=1,⋯,2,且 a 1 + a 2 = 0 , b 1 + b 2 = 0 a_1+a_2=0, b_1+b_2 = 0 a1+a2=0,b1+b2=0.
证明:
定义
f
(
x
)
=
a
1
ln
x
+
a
2
ln
(
1
−
x
)
f(x)=a_1 \ln x + a_2 \ln(1-x)
f(x)=a1lnx+a2ln(1−x)。则,
f
(
a
1
)
−
f
(
b
1
)
=
a
1
ln
a
1
b
1
+
a
2
ln
a
2
b
2
=
∫
b
1
a
1
f
′
=
∫
b
1
a
1
a
1
x
+
a
a
x
−
1
=
∫
b
1
a
1
a
1
−
x
x
(
1
−
x
)
≥
4
∫
b
1
a
1
a
1
−
x
=
2
(
a
1
−
b
1
)
2
=
(
a
1
−
b
1
)
2
+
(
a
2
−
b
2
)
2
f(a_1)-f(b_1)=a_1\ln \frac{a_1}{b_1}+a_2 \ln \frac{a_2}{b_2} =\int_{b_1}^{a_1}f\prime\\ =\int_{b_1}^{a_1}\frac{a_1}{x}+\frac{a_a}{x-1}=\int_{b_1}^{a_1}\frac{a_1-x}{x(1-x)}\\ \geq 4 \int_{b_1}^{a_1}a_1-x=2(a_1-b_1)^2=(a_1-b_1)^2+(a_2-b_2)^2
f(a1)−f(b1)=a1lnb1a1+a2lnb2a2=∫b1a1f′=∫b1a1xa1+x−1aa=∫b1a1x(1−x)a1−x≥4∫b1a1a1−x=2(a1−b1)2=(a1−b1)2+(a2−b2)2
证明
数学归纳法证明。
当
n
=
2
n=2
n=2 时成立。
假设当
n
=
k
n=k
n=k 时成立,即
∑
i
=
1
k
a
i
ln
a
i
b
i
≥
∑
i
=
1
k
(
a
i
−
b
i
)
2
\sum_{i=1}^{k}a_i \ln \frac{a_i}{b_i}\geq \sum_{i=1}^{k}(a_i-b_i)^2
i=1∑kailnbiai≥i=1∑k(ai−bi)2
那么
n
=
k
+
1
n=k+1
n=k+1 时,
令
a
^
i
=
a
i
,
b
^
i
=
b
i
,
i
=
1
,
⋯
,
k
−
1
\hat a_i = a_i,\hat b_i = b_i,i=1,\cdots,k-1
a^i=ai,b^i=bi,i=1,⋯,k−1 ,
a
^
k
=
a
k
+
a
k
+
1
,
b
^
k
=
b
k
+
b
k
+
1
\hat a_k=a_k+a_{k+1},\hat b_k=b_k+b_{k+1}
a^k=ak+ak+1,b^k=bk+bk+1。则,
∑
i
=
1
k
+
1
a
i
ln
a
i
b
i
=
∑
i
=
1
k
−
1
a
i
ln
a
i
b
i
+
a
k
ln
a
k
b
k
+
a
k
+
1
ln
a
k
+
1
b
k
+
1
≥
∑
i
=
1
k
−
1
a
^
i
ln
a
^
i
b
^
i
+
(
a
k
+
a
k
+
1
)
ln
a
k
+
a
k
+
1
b
k
+
b
k
+
1
=
∑
i
=
1
k
a
^
i
ln
a
^
i
b
^
i
≥
∑
i
=
1
k
(
a
^
i
−
b
^
i
)
2
=
∑
i
=
1
k
−
1
(
a
^
i
−
b
^
i
)
2
+
(
(
a
k
+
a
k
+
1
)
−
(
b
k
+
b
k
+
1
)
)
2
≥
∑
i
=
1
k
+
1
(
a
i
−
b
i
)
2
\sum_{i=1}^{k+1}a_i \ln \frac{a_i}{b_i}= \sum_{i=1}^{k-1}a_i \ln \frac{a_i}{b_i}+a_k\ln\frac{a_k}{b_k}+a_{k+1}\ln \frac{a_{k+1}}{b_{k+1}}\\ \geq \sum_{i=1}^{k-1}\hat a_i \ln \frac{\hat a_i}{\hat b_i}+(a_k+a_{k+1})\ln \frac{a_k+a_{k+1}}{b_k+b_{k+1}} = \sum_{i=1}^{k}\hat a_i \ln \frac{\hat a_i}{\hat b_i}\geq \sum_{i=1}^{k}(\hat a_i-\hat b_i)^2\\=\sum_{i=1}^{k-1}(\hat a_i-\hat b_i)^2+((a_k+a_{k+1})-(b_k+b_{k+1}))^2 \geq \sum_{i=1}^{k+1}(a_i-b_i)^2
i=1∑k+1ailnbiai=i=1∑k−1ailnbiai+aklnbkak+ak+1lnbk+1ak+1≥i=1∑k−1a^ilnb^ia^i+(ak+ak+1)lnbk+bk+1ak+ak+1=i=1∑ka^ilnb^ia^i≥i=1∑k(a^i−b^i)2=i=1∑k−1(a^i−b^i)2+((ak+ak+1)−(bk+bk+1))2≥i=1∑k+1(ai−bi)2
写得不是很严格,但是应该容易看懂。欢迎指教。
在信息论中,Pinsker 不等式以其发明者Mark Semenovich Pinsker 的名字命名,是根据Kullback-Leibler 散度限制总变异距离(或统计距离)的不等式。不等式紧到常数因子为止。