Pinsker’s inequality(信息散度和变分距离之间的不等式)

Pinsker’s inequality

D ( P 1 ∥ P 2 ) ≥ 1 2 ln ⁡ 2 ∥ P 1 − P 2 ∥ 1 2 D\left(P_1 \| P_2\right) \geq \frac{1}{2 \ln 2}\left\|P_1-P_2\right\|_1^2 D(P1P2)2ln21P1P212

证明

二进制

首先证明二进制的情况,考虑两个参数分别为 p , q , p ≥ q p,q,p \geq q p,q,pq的二进制分布。我们需要证的是:
p log ⁡ p q + ( 1 − p ) log ⁡ 1 − p 1 − q ≥ 4 2 ln ⁡ 2 ( p − q ) 2 p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} \geq \frac{4}{2 \ln 2}(p-q)^2 plogqp+(1p)log1q1p2ln24(pq)2不等式两边的差 g ( p , q ) g(p,q) g(p,q)
g ( p , q ) = p log ⁡ p q + ( 1 − p ) log ⁡ 1 − p 1 − q − 4 2 ln ⁡ 2 ( p − q ) 2 g(p,q) = p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} - \frac{4}{2 \ln 2}(p-q)^2 g(p,q)=plogqp+(1p)log1q1p2ln24(pq)2
q q q求导得 d g ( p , q ) d q = − p q ln ⁡ 2 + 1 − p ( 1 − q ) ln ⁡ 2 − 4 2 ln ⁡ 2 2 ( q − p ) = q − p q ( 1 − q ) ln ⁡ 2 − 4 ln ⁡ 2 ( q − p ) ≤ 0 \begin{aligned} \frac{d g(p, q)}{d q} & =-\frac{p}{q \ln 2}+\frac{1-p}{(1-q) \ln 2}-\frac{4}{2 \ln 2} 2(q-p) \\\\ & =\frac{q-p}{q(1-q) \ln 2}-\frac{4}{\ln 2}(q-p) \\\\ & \leq 0 \end{aligned} dqdg(p,q)=qln2p+(1q)ln21p2ln242(qp)=q(1q)ln2qpln24(qp)0最后一步因为 q ( 1 − q ) ≤ 1 / 4 q(1-q) \leq 1/4 q(1q)1/4 q ≤ p q\leq p qp
q = p q=p q=p时,有 g ( p , q ) = 0 g(p,q) = 0 g(p,q)=0,所以当 q ≤ p q\leq p qp时候, g ( p , q ) ≥ 0 g(p,q) \geq 0 g(p,q)0,不等式得证。

一般的情况

对于任意两个分布 P 1 , P 2 P_1,P_2 P1,P2,记:
A = { x : P 1 ( x ) > P 2 ( x ) } A=\left\{x: P_1(x)>P_2(x)\right\} A={x:P1(x)>P2(x)}定义一个新的二进制随机变量 Y = ϕ ( X ) Y=\phi(X) Y=ϕ(X),集合 A A A的指示器,记 P ^ 1 , P ^ 2 \hat P_1,\hat P_2 P^1,P^2 Y Y Y的分布,是 P 1 , P 2 P_1,P_2 P1,P2的量化版本。
将data-processing inequality应用到相对熵中得到:
D ( P 1 ∥ P 2 ) ≥ D ( P ^ 1 ∥ P ^ 2 ) ≥ 4 2 ln ⁡ 2 ( P 1 ( A ) − P 2 ( A ) ) 2 = 1 2 ln ⁡ 2 ∥ P 1 − P 2 ∥ 1 2 , \begin{aligned} D\left(P_1 \| P_2\right) & \geq D\left(\hat{P}_1 \| \hat{P}_2\right) \\\\ & \geq \frac{4}{2 \ln 2}\left(P_1(A)-P_2(A)\right)^2 \\\\ & =\frac{1}{2 \ln 2}\left\|P_1-P_2\right\|_1^2, \end{aligned} D(P1P2)D(P^1P^2)2ln24(P1(A)P2(A))2=2ln21P1P212,

变分距离

任意两个分布之间的变分距离定义为:
∥ P 1 − P 2 ∥ 1 = ∑ a ∈ X ∣ P 1 ( a ) − P 2 ( a ) ∣ \left\|P_1-P_2\right\|_1=\sum_{a \in \mathcal{X}}\left|P_1(a)-P_2(a)\right| P1P21=aXP1(a)P2(a)记:
A = { x : P 1 ( x ) > P 2 ( x ) } A=\left\{x: P_1(x)>P_2(x)\right\} A={x:P1(x)>P2(x)}
∥ P 1 − P 2 ∥ 1 = ∑ x ∈ X ∣ P 1 ( x ) − P 2 ( x ) ∣ = ∑ x ∈ A ( P 1 ( x ) − P 2 ( x ) ) + ∑ x ∈ A c ( P 2 ( x ) − P 1 ( x ) ) = P 1 ( A ) − P 2 ( A ) + P 2 ( A c ) − P 1 ( A c ) = P 1 ( A ) − P 2 ( A ) + 1 − P 2 ( A ) − 1 + P 1 ( A ) = 2 ( P 1 ( A ) − P 2 ( A ) ) . \begin{aligned} \left\|P_1-P_2\right\|_1 & =\sum_{x \in \mathcal{X}}\left|P_1(x)-P_2(x)\right| \\\\ & =\sum_{x \in A}\left(P_1(x)-P_2(x)\right)+\sum_{x \in A^c}\left(P_2(x)-P_1(x)\right) \\\\ & =P_1(A)-P_2(A)+P_2\left(A^c\right)-P_1\left(A^c\right) \\\\ & =P_1(A)-P_2(A)+1-P_2(A)-1+P_1(A) \\\\ & =2\left(P_1(A)-P_2(A)\right) . \end{aligned} P1P21=xXP1(x)P2(x)=xA(P1(x)P2(x))+xAc(P2(x)P1(x))=P1(A)P2(A)+P2(Ac)P1(Ac)=P1(A)P2(A)+1P2(A)1+P1(A)=2(P1(A)P2(A)).

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

信通天使

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值