紧算子的谱逼近理论及其在拉普拉斯特征值问题上的应用

紧算子的谱逼近理论及其在拉普拉斯特征值问题上的应用

紧算子的谱逼近理论

预备知识

V 1 V_1 V1 V 2 V_2 V2 是复希尔伯特空间,我们需要找 λ ∈ C \lambda \in \mathbb{C} λC u ∈ V 1 u \in V_{1} uV1 u ≠ 0 u\neq 0 u=0,使得,
a ( u , v ) = λ b ( u , v ) ∀ v ∈ V 2 a(u, v)=\lambda b(u, v) \quad \forall v \in V_{2} a(u,v)=λb(u,v)vV2
a : V 1 × V 2 → C a: V_{1} \times V_{2} \rightarrow \mathbb{C} a:V1×V2C b : V 1 × V 2 → C b: V_{1} \times V_{2} \rightarrow \mathbb{C} b:V1×V2C 是拟双线性形式, a a a 满足连续性,
∣ a ( v 1 , v 2 ) ∣ ≤ C ∥ v 1 ∥ V 1 ∥ v 2 ∥ V 2 ∀ v 1 ∈ V 1 ∀ v 2 ∈ V 2 \left|a\left(v_{1}, v_{2}\right)\right| \leq C\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}} \quad \forall v_{1} \in V_{1} \forall v_{2} \in V_{2} a(v1,v2)Cv1V1v2V2v1V1v2V2
b b b 在紧范数 H 1 H_1 H1 V 1 V_1 V1 中的任意 V 1 V_1 V1 意义下的有界序列有 H 1 H_1 H1 意义下的柯西子列)的意义下是有界的,
∣ b ( v 1 , v 2 ) ∣ ≤ C 2 ∥ v 1 ∥ H 1 ∥ v 2 ∥ V 2 ∀ v 1 ∈ V 1 ∀ v 2 ∈ V 2 \left|b\left(v_{1}, v_{2}\right)\right| \leq C_2\left\|v_{1}\right\|_{H_{1}}\left\|v_{2}\right\|_{V_{2}} \quad \forall v_{1} \in V_{1} \forall v_{2} \in V_{2} b(v1,v2)C2v1H1v2V2v1V1v2V2
我们假定类强制性条件:
inf ⁡ v 1 ∈ V 1 sup ⁡ v 2 ∈ V 2 ∣ a ( v 1 , v 2 ) ∣ ∥ v 1 ∥ V 1 ∥ v 2 ∥ V 2 ≥ γ > 0 sup ⁡ v 1 ∈ V 1 ∣ a ( v 1 , v 2 ) ∣ > 0 ∀ v 2 ∈ V 2 \ { 0 } \begin{aligned} &\inf _{v_{1} \in V_{1}} \sup _{v_{2} \in V_{2}} \frac{\left|a\left(v_{1}, v_{2}\right)\right|}{\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}}} \geq \gamma>0 \\ &\sup _{v_{1} \in V_{1}}\left|a\left(v_{1}, v_{2}\right)\right|>0 \quad \forall v_{2} \in V_{2} \backslash\{0\} \end{aligned} v1V1infv2V2supv1V1v2V2a(v1,v2)γ>0v1V1supa(v1,v2)>0v2V2\{0}

从上面的假设中,我们可以推的 T T T T ∗ T_{*} T 是个紧算子。关于这一点,我们给一个简单的证明。

证明:
关键的一点的是,我们有这样一个估计:
∥ T u ∥ V 1 ⩽ ( C / α ) ∥ u ∥ H 1 ∀ u ∈ V 1 \|T u\|_{V_1} \leqslant\left(C_{} / \alpha\right)\|u\|_{H_1}^{} \quad \forall u \in V_{1} TuV1(C/α)uH1uV1
这个估计的证明,大家有兴趣可以参考 BABUSKA[1971] 和 BABUSKA&AIZIZ [1973]。
假定 u j u_j uj V 1 V_1 V1 中的有界序列,由紧范数条件,那么它在 H 1 H_1 H1 存在一个柯西子列 u j l u_{j_l} ujl
u j l − u j k u_{j_l}-u_{j_k} ujlujk H 1 H_1 H1 中趋向于 0。根据上述的估计, T u j l T u_{j_l} Tujl V 1 V_1 V1 中的柯西列,故收敛。那么,它的共轭算子 T ∗ T* T 也是收敛的。

T T T V 1 V_1 V1 上的共轭,可以写为:
T ∗ = A ∗ ∘ T ∗ ∘ A ∗ − 1 T^{*}=A^{*} \circ T_{*} \circ A^{*-1} T=ATA1
其中 A : V 1 → V 2 A: V_{1} \rightarrow V_{2} A:V1V2 是和 a a a 相关的有界线性算子。 Riesz 表示定理告诉我总存在这样一个 A A A a ( u , v ) = ( A u , v ) V 2 a(u, v)=(A u, v)_{V_2} a(u,v)=(Au,v)V2,对任意的 u ∈ V 1 u \in V_1 uV1,和 v ∈ V 2 v \in V_2 vV2

我们也可以定义上述特征值问题的共轭特征值问题。寻求 λ ∈ C \lambda \in \mathbb{C} λC u ∈ V 2 u \in V_{2} uV2 u ≠ 0 u \neq 0 u=0 使得,
a ( v , u ) = λ b ( v , u ) ∀ v ∈ V 1 a(v, u)=\lambda b(v, u) \quad \forall v \in V_{1} a(v,u)=λb(v,u)vV1
离散特征值问题公式形式能够被类似地定义,罗列如下:
a ( v 1 , h , v 2 ) = λ h b ( v 1 , h , v 2 ) ∀ v 2 ∈ V 2 , h a\left(v_{1, h}, v_{2}\right)=\lambda_{h} b\left(v_{1, h}, v_{2}\right) \quad \forall v_{2} \in V_{2, h} a(v1,h,v2)=λhb(v1,h,v2)v2V2,h
inf ⁡ v 1 ∈ V 1 , h sup ⁡ v 2 ∈ V 2 , h ∣ a ( v 1 , v 2 ) ∣ ∥ v 1 ∥ V 1 ∥ v 2 ∥ V 2 ≥ γ > 0 sup ⁡ v 1 ∈ V 1 , h ∣ a ( v 1 , v 2 ) ∣ > 0 ∀ v 2 ∈ V 2 , h \ { 0 } \begin{aligned} &\inf _{v_{1} \in V_{1, h}} \sup _{v_{2} \in V_{2, h}} \frac{\left|a\left(v_{1}, v_{2}\right)\right|}{\left\|v_{1}\right\|_{V_{1}}\left\|v_{2}\right\|_{V_{2}}} \geq \gamma>0 \\ &\sup _{v_{1} \in V_{1, h}}\left|a\left(v_{1}, v_{2}\right)\right|>0 \quad \forall v_{2} \in V_{2, h} \backslash\{0\} \end{aligned} v1V1,hinfv2V2,hsupv1V1v2V2a(v1,v2)γ>0v1V1,hsupa(v1,v2)>0v2V2,h\{0}

并且我们假定
dim ⁡ ( V 1 , h ) = dim ⁡ ( V 2 , h ) \operatorname{dim}\left(V_{1, h}\right)=\operatorname{dim}\left(V_{2, h}\right) dim(V1,h)=dim(V2,h)

收敛阶

为了统一,我们用 X X X 表示 V 1 V_1 V1
时间关系,我们直接给出一些主要结论。

推论: λ \lambda λ 是原连续问题的特征值,令 E = E ( λ − 1 ) V 1 E=E\left(\lambda^{-1}\right) V_{1} E=E(λ1)V1 是原问题的广义特征空间,并且令 E h = E h ( λ − 1 ) V 1 E_{h}=E_{h}\left(\lambda^{-1}\right) V_{1} Eh=Eh(λ1)V1,那么
δ ^ ( E , E h ) ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 \hat{\delta}\left(E, E_{h}\right) \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} δ^(E,Eh)Cu=1uEsupvV1,hinfuvV1

推论: λ \lambda λ 是原连续问题的特征值, λ ^ h \widehat{\lambda}_{h} λ h 表示逼近 λ \lambda λ m m m 个特征值的算术平均。 那么,
∣ λ − λ ^ h ∣ ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 sup ⁡ u ∈ E ∗ ∥ u ∥ = 1 inf ⁡ v ∈ V 2 , h ∥ u − v ∥ V 2 \left|\lambda-\widehat{\lambda}_{h}\right| \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} \sup _{u \in E^* \atop\|u\|=1} \inf _{v \in V_{2, h}}\|u-v\|_{V_{2}} λλ hCu=1uEsupvV1,hinfuvV1u=1uEsupvV2,hinfuvV2
这里 E E E λ \lambda λ 广义特征函数空间, E ∗ E^{*} E 关于 λ \lambda λ 的广义共轭特征函数空间。

推论: i = 1 , … , m i=1, \ldots, m i=1,,m,我们有
∣ λ − λ i , h ∣ α ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 sup ⁡ u ∈ E ∗ ∥ u ∥ = 1 inf ⁡ v ∈ V 2 h ∥ u − v ∥ V 2 \left|\lambda-\lambda_{i, h}\right|^{\alpha} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h} \atop }\|u-v\|_{V_{1}} \sup _{u \in E^* \atop \|u\|=1} \inf _{v \in V_2^h}\|u-v\|_{V_{2}} λλi,hαCu=1uEsupvV1,hinfuvV1u=1uEsupvV2hinfuvV2
这里 E E E λ \lambda λ 广义特征函数空间, E ∗ E^{*} E 关于 λ \lambda λ 的广义共轭特征函数空间。

推论: { λ h } \left\{\lambda_{h}\right\} {λh} 是收敛到 λ \lambda λ 的离散特征值序列。 对于某个 k ≤ α k \leq \alpha kα ,考虑一列 ker ⁡ ( λ h − 1 − T h ) k \operatorname{ker}\left(\lambda_{h}^{-1}-T_{h}\right)^{k} ker(λh1Th)k 中的单位特征函数 { u h } \left\{u_{h}\right\} {uh} k k k 阶离散广义特征函数)。那么,对于任意的整数 ℓ \ell 满足 k ≤ ℓ ≤ α k \leq \ell \leq \alpha kα,总存在一个连续问题的 ℓ \ell 阶广义特征向量 u ( h ) u(h) u(h),使得
∥ u ( h ) − u h ∥ V 1 α / ( ℓ − k + 1 ) ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V 1 , h ∥ u − v ∥ V 1 . \left\|u(h)-u_{h}\right\|_{V_{1}}^{\alpha /(\ell-k+1)} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{1, h}}\|u-v\|_{V_{1}} . u(h)uhV1α/(k+1)Cu=1uEsupvV1,hinfuvV1.

对称变分特征值问题

这里我们考虑特殊的情况, V 1 = V 2 V_{1}=V_{2} V1=V2 是相同的实值希尔伯特空间,并且 T T T 是自共轭的,那么我们有如下结果:

定理: 对每个 k k k,我们有
λ ( k ) ≤ λ h ( k ) ≤ λ ( k ) + C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V h ∥ u − v ∥ V 2 , \lambda^{(k)} \leq \lambda_{h}^{(k)} \leq \lambda^{(k)}+C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{h}}\|u-v\|_{V}^{2}, λ(k)λh(k)λ(k)+Cu=1uEsupvVhinfuvV2,
这里 E E E 表示 λ ( k ) \lambda^{(k)} λ(k) 对应的特征空间。

定理: u ( k ) u^{(k)} u(k) m m m 重特征值( λ ( k ) = ⋯ = λ ( k + m − 1 ) \lambda^{(k)}=\cdots=\lambda^{(k+m-1)} λ(k)==λ(k+m1) λ ( k ) \lambda^{(k)} λ(k) 的一个单位特征向量 , u h ( k ) , … , u h ( k + m − 1 ) u_{h}^{(k)}, \ldots, u_{h}^{(k+m-1)} uh(k),,uh(k+m1) 表示 m m m 个 收敛于 λ ( k ) \lambda^{(k)} λ(k) 的离散特征值的特征函数,那么存在
w h ( k ) ∈ span ⁡ { u h ( k ) , … , u h ( k + m − 1 ) } w_{h}^{(k)} \in \operatorname{span}\left\{u_{h}^{(k)}, \ldots, u_{h}^{(k+m-1)}\right\} wh(k)span{uh(k),,uh(k+m1)}
使得
∥ u ( k ) − w h ( k ) ∥ V ≤ C sup ⁡ u ∈ E ∥ u ∥ = 1 inf ⁡ v ∈ V h ∥ u − v ∥ V \left\|u^{(k)}-w_{h}^{(k)}\right\|_{V} \leq C \sup _{u \in E \atop\|u\|=1} \inf _{v \in V_{h}}\|u-v\|_{V} u(k)wh(k)VCu=1uEsupvVhinfuvV
这里 E E E 表示 λ ( k ) \lambda^{(k)} λ(k) 对应的特征空间。

拉普拉斯特征值问题

简述

应用 Babuska-Osborn 理论到拉普拉斯特征值协调有限元问题,就会得到更加具体的估计。
拉普拉斯问题的描述是,给定 Ω ⊂ R n \Omega \subset \mathbb{R}^{n} ΩRn,和实值索伯洛夫空间 H 0 1 ( Ω ) H_{0}^{1}(\Omega) H01(Ω),我们想要寻找特征值 λ ∈ R \lambda \in \mathbb{R} λR 以及特征函数 u ∈ H 0 1 ( Ω ) u \in H_{0}^{1}(\Omega) uH01(Ω),且 u ≠ 0 u \neq 0 u=0,使得:
( grad ⁡ u , grad ⁡ v ) = λ ( u , v ) ∀ v ∈ H 0 1 ( Ω ) (\operatorname{grad} u, \operatorname{grad} v)=\lambda(u, v) \quad \forall v \in H_{0}^{1}(\Omega) (gradu,gradv)=λ(u,v)vH01(Ω)
我们找一个有限维空间 V h ⊂ H 0 1 ( Ω ) V_{h} \subset H_{0}^{1}(\Omega) VhH01(Ω), 它对应的有限元逼近是,寻找 λ h ∈ R \lambda_{h} \in \mathbb{R} λhR u h ∈ V h u_{h} \in V_{h} uhVh,且 u h ≠ 0 u_{h} \neq 0 uh=0,使得
( grad ⁡ u h , grad ⁡ v ) = λ h ( u h , v ) ∀ v ∈ V h \left(\operatorname{grad} u_{h}, \operatorname{grad} v\right)=\lambda_{h}\left(u_{h}, v\right) \quad \forall v \in V_{h} (graduh,gradv)=λh(uh,v)vVh
下面我们都用 a ( ⋅ , ⋅ ) a(\cdot, \cdot) a(,) 来表示双线性形式 ( grad ⁡ ⋅ , grad ⁡ ⋅ ) (\operatorname{grad} \cdot, \operatorname{grad} \cdot) (grad,grad)

这时候,我们取 V = H 0 1 ( Ω ) V = H_{0}^{1}(\Omega) V=H01(Ω) 以及 H = L 2 ( Ω ) H = L^{2}(\Omega) H=L2(Ω)。那么,我们可以分别定义两个解算子:
T V : V → V T_V: V \rightarrow V TV:VV 满足:
a ( T V f , v ) = ( f , v ) ∀ v ∈ V a(T_V f, v)=(f, v) \quad \forall v \in V a(TVf,v)=(f,v)vV
T H : H → H T_H: H \rightarrow H TH:HH 满足, T H f ∈ V ⊂ H T_H f \in V \subset H THfVH 是个内射:
a ( T H f , v ) = ( f , v ) ∀ v ∈ V a(T_H f, v)=(f, v) \quad \forall v \in V a(THf,v)=(f,v)vV

容易知道, T V T_V TV T H T_H TH 都是自共轭的:
a ( T V x , y ) = ( x , y ) = ( y , x ) = a ( T V y , x ) = a ( x , T V y ) ∀ x , y ∈ V a\left(T_{V} x, y\right)=(x, y)=(y, x)=a\left(T_{V} y, x\right)=a\left(x, T_{V} y\right) \quad \forall x, y \in V a(TVx,y)=(x,y)=(y,x)=a(TVy,x)=a(x,TVy)x,yV
( T H x , y ) = ( y , T H x ) = a ( T H y , T H x ) = a ( T H x , T H y ) = ( x , T H y ) ∀ x , y ∈ H \left(T_{H} x, y\right)=\left(y, T_{H} x\right)=a\left(T_{H} y, T_{H} x\right)=a\left(T_{H} x, T_{H} y\right)=\left(x, T_{H} y\right) \quad \forall x, y \in H (THx,y)=(y,THx)=a(THy,THx)=a(THx,THy)=(x,THy)x,yH

其实, T V T_V TV T H T_H TH 对应的特征对也是一样的。

不妨假定 V h V_h Vh 是一个 k k k 阶多项式空间。那么,我们都知道逼近误差估计如下所示:
inf ⁡ v ∈ V h ∥ u − v ∥ L 2 ( Ω ) ≤ C h min ⁡ { k + 1 , r } ∥ u ∥ H r ( Ω ) inf ⁡ v ∈ V h ∥ u − v ∥ H 1 ( Ω ) ≤ C h min ⁡ { k , r − 1 } ∥ u ∥ H r ( Ω ) \begin{aligned} &\inf _{v \in V_{h}}\|u-v\|_{L^{2}(\Omega)} \leq C h^{\min \{k+1, r\}}\|u\|_{H^{r}(\Omega)} \\ &\inf _{v \in V_{h}}\|u-v\|_{H^{1}(\Omega)} \leq C h^{\min \{k, r-1\}}\|u\|_{H^{r}(\Omega)} \end{aligned} vVhinfuvL2(Ω)Chmin{k+1,r}uHr(Ω)vVhinfuvH1(Ω)Chmin{k,r1}uHr(Ω)

T = T V T=T_V T=TV 时的分析

离散的解算子 T h : V → V T_{h}: V \rightarrow V Th:VV,它定义为:
a ( T h f , v ) = ( f , v ) ∀ v ∈ V h a\left(T_{h} f, v\right)=(f, v) \quad \forall v \in V_{h} a(Thf,v)=(f,v)vVh

有一个众所周知的结论是,如果区域是利普希茨连续的,那么总存在一个 ε > 0 \varepsilon > 0 ε>0
∥ T f − T h f ∥ H 0 1 ( Ω ) ≤ C h ε ∥ f ∥ H 0 1 ( Ω ) \left\|T f-T_{h} f\right\|_{H_{0}^{1}(\Omega)} \leq C h^{\varepsilon}\|f\|_{H_{0}^{1}(\Omega)} TfThfH01(Ω)ChεfH01(Ω)
那么特征值的逼近性就得到了保障。

假定 E E E 是关于特征值 λ \lambda λ 的特征空间,它的正则性是 r r r,那么
∥ ( T − T h ) ∣ E ∥ L ( V ) = O ( h min ⁡ { k , r − 1 } ) \left\|\left(T-T_{h}\right)_{\mid E}\right\|_{\mathcal{L}(V)}=O\left(h^{\min \{k, r-1\}}\right) (TTh)EL(V)=O(hmin{k,r1})
下面我们用 τ \tau τ 来表示 min ⁡ { k , r − 1 } \min \{k, r-1\} min{k,r1}

那么,我们有如下两个定理:

由前面提到的特征向量估计定理。可得
定理 u u u 是关于 m m m 重特征值 λ \lambda λ 的其中一个单位特征向量, w h ( 1 ) , … , w h ( m ) w_{h}^{(1)}, \ldots, w_{h}^{(m)} wh(1),,wh(m) 表示 收敛到 λ \lambda λ m m m 个离散特征值的特征向量。 那么,存在
u h ∈ span ⁡ { w h ( 1 ) , … , w h ( m ) } u_{h} \in \operatorname{span}\left\{w_{h}^{(1)}, \ldots, w_{h}^{(m)}\right\} uhspan{wh(1),,wh(m)}
使得
∥ u − u h ∥ V ≤ C h τ ∥ u ∥ H 1 + τ ( Ω ) . \left\|u-u_{h}\right\|_{V} \leq C h^{\tau}\|u\|_{H^{1+\tau}(\Omega)} . uuhVChτuH1+τ(Ω).

另外,关于特征值的估计,我们有如下描述。
定理: λ h \lambda_{h} λh 是一个收敛到 λ \lambda λ 的特征值。 如下最优双倍收敛率成立:
λ ≤ λ h ≤ λ + C h 2 τ \lambda \leq \lambda_{h} \leq \lambda+C h^{2 \tau} λλhλ+Ch2τ
证明:
根据前面提到的关于单个特征值估计的定义,我们事实上只要估计,
∑ j , k = 1 m ∣ ( ( T − T h ) ϕ j , ϕ k ) V ∣ \sum_{j, k=1}^{m}\left|\left(\left(T-T_{h}\right) \phi_{j}, \phi_{k}\right)_{V}\right| j,k=1m((TTh)ϕj,ϕk)V
这里的 { ϕ 1 , … , ϕ m } \left\{\phi_{1}, \ldots, \phi_{m}\right\} {ϕ1,,ϕm} 是特征空间 E E E 的一组基。我们有,
∣ ( ( T − T h ) u , v ) V ∣ ≤ C ∣ a ( ( T − T h ) u , v ) ∣ = C inf ⁡ v h ∈ V h ∣ a ( ( T − T h ) u , v − v h ) ∣ ≤ ∥ ( T − T h ) u ∥ V inf ⁡ v h ∈ V h ∥ v − v h ∥ V ≤ C h τ ∥ u ∥ V h τ ∥ v ∥ H 1 + τ ( Ω ) ≤ C h 2 τ ∥ u ∥ V ∥ v ∥ V , \begin{aligned} \left|\left(\left(T-T_{h}\right) u, v\right)_{V}\right| & \leq C\left|a\left(\left(T-T_{h}\right) u, v\right)\right|=C \inf _{v_{h} \in V_{h}}\left|a\left(\left(T-T_{h}\right) u, v-v_{h}\right)\right| \\ & \leq\left\|\left(T-T_{h}\right) u\right\|_{V} \inf _{v_{h} \in V_{h}}\left\|v-v_{h}\right\|_{V} \\ & \leq C h^{\tau}\|u\|_{V} h^{\tau}\|v\|_{H^{1+\tau}(\Omega)} \leq C h^{2 \tau}\|u\|_{V}\|v\|_{V}, \end{aligned} ((TTh)u,v)VCa((TTh)u,v)=CvhVhinfa((TTh)u,vvh)(TTh)uVvhVhinfvvhVChτuVhτvH1+τ(Ω)Ch2τuVvV,
这个对于任意的 u , v ∈ E u, v \in E u,vE 都是成立的,因为 v = λ T v v=\lambda T v v=λTv,那么实际上,
∥ v ∥ H 1 + τ ( Ω ) ≤ C ∥ v ∥ V \|v\|_{H^{1+\tau}(\Omega)} \leq C\|v\|_{V} vH1+τ(Ω)CvV

T = T H T=T_H T=TH 时的分析

我们现在考虑 T = T H T=T_H T=TH,它的离散算子 T h : H → H T_{h}: H \rightarrow H Th:HH 的定义为,
a ( T h f , v ) = ( f , v ) ∀ v ∈ V h a\left(T_{h} f, v\right)=(f, v) \quad \forall v \in V_{h} a(Thf,v)=(f,v)vVh

同样地,存在一个 ϵ > 0 \epsilon > 0 ϵ>0,我们有:
∥ T f − T h f ∥ L 2 ( Ω ) ≤ C h 1 + ε ∥ f ∥ L 2 ( Ω ) \left\|T f-T_{h} f\right\|_{L^{2}(\Omega)} \leq C h^{1+\varepsilon}\|f\|_{L^{2}(\Omega)} TfThfL2(Ω)Ch1+εfL2(Ω)

同样地,由之前给出的一般的特征函数估计,我们有如下定理:
定理: u u u m m m 重特征值 λ \lambda λ 对应的某一个单位特征函数, w h ( 1 ) , … , w h ( m ) w_{h}^{(1)}, \ldots, w_{h}^{(m)} wh(1),,wh(m) 表示 m m m 个收敛到 λ \lambda λ 的离散特征值对应的特征函数。
那么存在, u h ∈ span ⁡ { w h ( 1 ) , … , w h ( m ) } u_{h} \in \operatorname{span}\left\{w_{h}^{(1)}, \ldots, w_{h}^{(m)}\right\} uhspan{wh(1),,wh(m)}
使得
∥ u − u h ∥ H ≤ C h 1 + τ ∥ u ∥ H 1 + τ ( Ω ) . \left\|u-u_{h}\right\|_{H} \leq C h^{1+\tau}\|u\|_{H^{1+\tau}(\Omega)} . uuhHCh1+τuH1+τ(Ω).

虽然前面已经过了,同样地,从这个角度出发,我们也可以得到特征值的估计。跟前面一样,对于特征值的估计,我们也只需要估计
∑ j , k = 1 m ∣ ( ( T − T h ) ϕ j , ϕ k ) H ∣ \sum_{j, k=1}^{m}\left|\left(\left(T-T_{h}\right) \phi_{j}, \phi_{k}\right)_{H}\right| j,k=1m((TTh)ϕj,ϕk)H
同样,这里的 { ϕ 1 , … , ϕ m } \left\{\phi_{1}, \ldots, \phi_{m}\right\} {ϕ1,,ϕm} 是特征空间 E E E 的基函数。那么,结论可由如下估计得到:
∣ ( ( T − T h ) u , v ) ∣ = ∣ ( v , ( T − T h ) u ) ∣ = ∣ a ( T v , ( T − T h ) u ) ∣ = ∣ a ( ( T − T h ) u , T v ) ∣ = ∣ a ( ( T − T h ) u , T v − T h v ) ∣ ≤ ∥ ( T − T h ) u ∥ V ∥ ( T − T h ) v ∥ V ≤ C h 2 τ , \begin{aligned} \left|\left(\left(T-T_{h}\right) u, v\right)\right| &=\left|\left(v,\left(T-T_{h}\right) u\right)\right|=\left|a\left(T v,\left(T-T_{h}\right) u\right)\right| \\ &=\left|a\left(\left(T-T_{h}\right) u, T v\right)\right|=\left|a\left(\left(T-T_{h}\right) u, T v-T_{h} v\right)\right| \\ & \leq\left\|\left(T-T_{h}\right) u\right\|_{V}\left\|\left(T-T_{h}\right) v\right\|_{V} \\ & \leq C h^{2 \tau}, \end{aligned} ((TTh)u,v)=(v,(TTh)u)=a(Tv,(TTh)u)=a((TTh)u,Tv)=a((TTh)u,TvThv)(TTh)uV(TTh)vVCh2τ,
这里的 u , v ∈ E u, v \in E u,vE 都是单位特征向量。

上面得到的是在 H H H 中的估计。最后呢,要再一次得到在 V V V 中的估计,只要利用如下的等式即可:

a ( u − u h , u − u h ) = λ ( u − u h , u − u h ) − ( λ − λ h ) ( u h , u h ) a\left(u-u_{h}, u-u_{h}\right)=\lambda\left(u-u_{h}, u-u_{h}\right)-\left(\lambda-\lambda_{h}\right)\left(u_{h}, u_{h}\right) a(uuh,uuh)=λ(uuh,uuh)(λλh)(uh,uh)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值