泛函分析复习笔记(三)紧算子与Fredholm算子

本文介绍了Banach空间中的紧算子概念及其性质,包括紧算子的定义、性质和构造,如有穷秩算子和秩1算子。进一步讨论了Fredholm算子,解释了它们与紧算子的关系,以及Fredholm二择一原理和指数的概念。此外,还阐述了紧算子在无穷维空间中的谱分布特点和不变子空间的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chapter 3 紧算子与Fredholm算子

紧算子 X , Y \mathscr{X}, \mathscr{Y} X,Y B B B 空间, A : X → Y A: \mathscr{X} \rightarrow \mathscr{Y} A:XY 线性. 称 A A A 是紧算子, 如果 A ( B 1 ) ‾ \overline{A\left(B_{1}\right)} A(B1) Y \mathscr{Y} Y 中是紧集, 其中 B 1 B_{1} B1 X \mathscr{X} X 中的单位球.
一切紧算子的集合记作 C ( X , Y ) \mathfrak{C}(\mathscr{X}, \mathscr{Y}) C(X,Y), 当 X = Y \mathscr{X}=\mathscr{Y} X=Y 时, 记作 C ( X ) \mathfrak{C}(\mathscr{X}) C(X)

注: A A A ⇔ \Leftrightarrow 对于 X \mathscr{X} X 中的任意有界集 B , A ( B ) ‾ B, \overline{A(B)} B,A(B) Y \mathscr{Y} Y 中是紧集 ⇔ \Leftrightarrow 对任意有界点列 { x n } ⊂ X , { A x n } \left\{x_{n}\right\} \subset \mathscr{X},\left\{A x_{n}\right\} {xn}X,{Axn} 有收敛子列(紧等价于自列紧
性质:
(1) C ( X , Y ) ⊂ L ( X , Y ) \mathfrak{C}(\mathscr{X}, \mathscr{Y}) \subset \mathscr{L}(\mathscr{X}, \mathscr{Y}) C(X,Y)L(X,Y)且闭
(2) C ( X , Y ) \mathfrak{C}(\mathscr{X}, \mathscr{Y}) C(X,Y)是线性空间
(3) 设 A ∈ C ( X , Y ) A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y}) AC(X,Y), 又设 X 0 ⊂ X \mathscr{X}_{0} \subset \mathscr{X} X0X 是一个闭线性子空间, 那么 A 0 ≜ A ∣ X 0 ∈ C ( X 0 , Y ) A_{0} \triangleq A \mid \mathscr{X}_{0} \in \mathfrak{C}\left(\mathscr{X}_{0}, \mathscr{Y}\right) A0AX0C(X0,Y)
(4) 若 A ∈ C ( X , Y ) A \in \mathfrak{C}(\mathscr{X}, \mathscr{Y}) AC(X,Y), 则 R ( A ) R(A) R(A) 可分
(5) 若 A ∈ L ( X , Y ) A \in \mathscr{L}(\mathscr{X}, \mathscr{Y}) AL(X,Y), 而 B ∈ L ( Y , Z ) B \in \mathscr{L}(\mathscr{Y}, \mathscr{Z}) BL(Y,Z), 并且这两个算子中 有一个是紧的, 则 B A ∈ C ( X , Z ) B A \in \mathfrak{C}(\mathscr{X}, \mathscr{Z}) BAC(X,Z).

全连续 x n ⇀ x ⟹ A x n → A x x_{n} \rightharpoonup x \Longrightarrow A x_{n} \rightarrow A x xnxAxnAx

命题:紧算子必定全连续,自反空间中的全连续算子必定紧

定理: T ∈ C ( X , Y ) ⟺ T ∗ ∈ C ( Y ∗ , X ∗ ) T \in \mathfrak{C}(\mathscr{X}, \mathscr{Y}) \Longleftrightarrow T^{*} \in \mathbb{C}\left(\mathscr{Y}^*, \mathscr{X}^{*}\right) TC(X,Y)TC(Y,X)

紧算子的构造

有穷秩算子: 设 T ∈ L ( X , Y ) T \in \mathscr{L}(\mathscr{X}, \mathscr{Y}) TL(X,Y), 若 dim ⁡ R ( T ) < ∞ \operatorname{dim} R(T)<\infty dimR(T)<,一切有穷秩算子的集合记作 F ( X , Y ) F(\mathscr{X}, \mathscr{Y}) F(X,Y)(显然, F ⊂ C F\subset C FC

秩1算子:设 f ∈ X ∗ , y ∈ Y f \in \mathscr{X}^{*}, y \in \mathscr{Y} fX,yY, 用 y ⊗ f y \otimes f yf 表示下列算子: x ↦ ⟨ f , x ⟩ y ( ∀ x ∈ X ) x \mapsto\langle f, x\rangle y \quad(\forall x \in \mathscr{X}) xf,xy(xX),称为秩1算子

有穷秩算子的分解: T ∈ F ( X , Y ) T \in F(\mathscr{X}, \mathscr{Y}) TF(X,Y) ⇔ \Leftrightarrow ∃ y i ∈ Y \exists y_{i} \in \mathscr{Y} yiY 以 及 f i ∈ X ∗ ( i = 1 , 2 , ⋯   , n ) f_{i} \in \mathscr{X}^{*}(i=1,2, \cdots, n) fiX(i=1,2,,n), 使得 T = ∑ i = 1 n y i ⊗ f i T=\sum_{i=1}^{n} y_{i} \otimes f_{i} T=i=1nyifi

有穷秩算子的逼近:

(1) 在Hilbert空间上, F ( X , Y ) ‾ = C ( X , Y ) \overline{F(\mathscr{X}, \mathscr{Y})}=\mathfrak{C}(\mathscr{X}, \mathscr{Y}) F(X,Y)=C(X,Y)(思路:在有穷 ϵ \epsilon ϵ-网上做正交投影)

(2) **在Banach空间上,如果存在一组Schauder基: { e n } n = 1 ∞ ⊂ X \left\{e_{n}\right\}_{n=1}^{\infty} \subset \mathscr{X} {en}n=1X X \mathscr{X} X ∀ x ∈ X \forall x \in \mathscr{X} xX, 存在唯一的一个序列 { C n ( x ) } \left\{C_{n}(x)\right\} {Cn(x)}, 使得
x = lim ⁡ N → ∞ ∑ n = 1 N C n ( x ) e n x=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} C_{n}(x) e_{n} x=limNn=1NCn(x)en ,则也有 F ( X , Y ) ‾ = C ( X , Y ) \overline{F(\mathscr{X}, \mathscr{Y})}=\mathfrak{C}(\mathscr{X}, \mathscr{Y}) F(X,Y)=C(X,Y),但是Schauder基并不一定存在

Reisz-Fredholm理论

需求:求解微分方程(形如: x ( t ) = ∫ 0 1 K ( t , s ) x ( s ) d s + y ( t ) x(t)=\int_0^1 K(t,s)x(s)ds+y(t) x(t)=01K(t,s)x(s)ds+y(t)),其定义了一个算子 T x = y , T = I − A , Tx=y, T=I-A, Tx=y,T=IA, T A TA TA

Fredholm二择一:关于该方程仅存在两种可能:(1) ∀ y ∈ L 2 [ 0 , 1 ] \forall y\in L^2[0,1] yL2[0,1],方程存在唯一解 (2) y = θ y=\theta y=θ时,方程有非零解

对任意的 M ⊂ X , N ⊂ X ∗ M \subset \mathscr{X}, N \subset \mathscr{X}^{*} MX,NX, 记 ⊥ M ≜ { f ∈ X ∗ ∣ ⟨ f , x ⟩ = 0 , ∀ x ∈ M } , N ⊥ ≜ { x ∈ X ∣ ⟨ f , x ⟩ = 0 , ∀ f ∈ N } . \begin{gathered} { }^{\perp} M \triangleq\left\{f \in \mathscr{X}^{*} \mid\langle f, x\rangle=0, \forall x \in M\right\}, \\ N^{\perp} \triangleq\{x \in \mathscr{X} \mid\langle f, x\rangle=0, \forall f \in N\} . \end{gathered} M{fXf,x=0,xM},N{xXf,x=0,fN}.

又若 f ∈ X ∗ , x ∈ X f \in \mathscr{X}^{*}, x \in \mathscr{X} fX,xX, 满足 ⟨ f , x ⟩ = 0 \langle f, x\rangle=0 f,x=0, 便简单地记作 f ⊥ x f \perp x fx

则:Fredholm理论 T = I − A , A T=I-A,A T=IA,A紧=> (1) N ( T ) = { θ } ⟹ R ( T ) = X N(T)=\{\theta\} \Longrightarrow R(T)=\mathscr{X} N(T)={θ}R(T)=X (2) σ ( T ) = σ ( T ∗ ) ‾ \sigma(T)=\overline{\sigma\left(T^{*}\right)} σ(T)=σ(T)(共轭),且 dim ⁡ N ( T ) = dim ⁡ N ( T ∗ ) < ∞ \operatorname{dim} N(T)=\operatorname{dim} N\left(T^{*}\right)<\infty dimN(T)=dimN(T)< (3) R ( T ) = N ( T ∗ ) ⊥ , R ( T ∗ ) = ⊥ N ( T ) R(T)=N\left(T^{*}\right)^{\perp}, R\left(T^{*}\right)={ }^{\perp} N(T) R(T)=N(T),R(T)=N(T)

余维数 codim ⁡ ( M ) = dim ⁡ ( X / M ) \operatorname{codim} (M)=\dim(\mathscr{X}/M) codim(M)=dim(X/M)

紧算子的谱理论

紧算子的谱分布:若 A ∈ C ( X ) A \in \mathfrak{C}(\mathscr{X}) AC(X), 则:(1) 0 ∈ σ ( A ) 0 \in \sigma(A) 0σ(A), 除非 dim ⁡ X < ∞ \operatorname{dim} \mathscr{X}<\infty dimX< (2) σ ( A ) \ { 0 } = σ p ( A ) \ { 0 } \sigma(A) \backslash\{0\}=\sigma_{p}(A) \backslash\{0\} σ(A)\{0}=σp(A)\{0} (3) σ p ( A ) \sigma_{p}(A) σp(A) 至多以 0 为聚点.

翻译:在无穷维空间上,只有三种可能:(1) σ ( A ) = { 0 } \sigma(A)=\{0\} σ(A)={0} (2) σ ( A ) = { 0 , λ 1 , λ 2 , ⋯   , λ n } \sigma(A)=\left\{0, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\} σ(A)={0,λ1,λ2,,λn} (3) σ ( A ) = { λ 1 , λ 2 , ⋯   , λ n , ⋯   } \sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}, \cdots\right\} σ(A)={λ1,λ2,,λn,}, 其中 λ n → 0 \lambda_{n} \rightarrow 0 λn0

不变子空间:设 X \mathscr{X} X 是一个 B B B 空间, M ⊂ X M \subset \mathscr{X} MX ,若 A ( M ) ⊂ M A(M) \subset M A(M)M则称为不变子空间

常见不变子空间:(1)平凡不变子空间: { θ } , X \{\theta\},\mathscr{X} {θ},X (2) λ ∈ σ p ( A ) \lambda \in \sigma_{p}(A) λσp(A), 即 λ \lambda λ A A A 的特征值, 则 N ( λ I − A ) N(\lambda I-A) N(λIA) 为不变子空间 (3) ∀ y ∈ X \forall y \in \mathscr{X} yX, 若记 L y ≜ { P ( A ) y ∣ P L_{y} \triangleq\{P(A) y \mid P Ly{P(A)yP 是任意多项式 } \} }, 则 L y L_{y} Ly A A A的不变子空间.

定理:若 dim ⁡ X ⩾ 2 \operatorname{dim} \mathscr{X} \geqslant 2 dimX2, 则 ∀ A ∈ C ( X ) , A \forall A \in \mathfrak{C}(\mathscr{X}), A AC(X),A 必有非平凡的闭不变子空间.

Fredholm算子: 设 X , Y \mathscr{X}, \mathscr{Y} X,Y 是 Banach 空间, T ∈ L ( X , Y ) T \in \mathscr{L}(\mathscr{X}, \mathscr{Y}) TL(X,Y) 称为一个 Fredholm 算子, 是指:
(1) R ( T ) R(T) R(T) 是闭的;
(2) dim ⁡ N ( T ) < ∞ \operatorname{dim} N(T)<\infty dimN(T)<;
(3) codim ⁡ R ( T ) < ∞ \operatorname{codim} R(T)<\infty codimR(T)<
X → Y \mathscr{X} \rightarrow \mathscr{Y} XY 的一切 Fredholm 算子的全体记作 F ( X , Y ) \mathscr{F}(\mathscr{X}, \mathscr{Y}) F(X,Y), 特别地, 当 Y = X \mathscr{Y}=\mathscr{X} Y=X 时, 记作 F ( X ) \mathscr{F}(\mathscr{X}) F(X).

指标 ind ⁡ ( T ) = dim ⁡ N ( T ) − codim ⁡ R ( T ) \operatorname{ind}(T) =\dim N(T)-\operatorname{codim} R(T) ind(T)=dimN(T)codimR(T),从而 I − C , C I-C,C IC,C紧为一个Fredholm算子

则:左右移位算子的指标分别为正负1

Fredholm算子的结构

(1) 若 T ∈ F ( X , Y ) T \in \mathscr{F}(\mathscr{X}, \mathscr{Y}) TF(X,Y), 则必有 S ∈ L ( Y , X ) S \in \mathscr{L}(\mathscr{Y}, \mathscr{X}) SL(Y,X) 以 及 A 1 ∈ C ( X ) , A 2 ∈ C ( Y ) A_{1} \in \mathfrak{C}(\mathscr{X}), A_{2} \in \mathfrak{C}(\mathscr{Y}) A1C(X),A2C(Y), 使得 S T = I x − A 1 , T S = I y − A 2 S T=I_{x}-A_{1}, T S=I_{y}-A_{2} ST=IxA1,TS=IyA2,其中 I x , I y I_{x}, I_{y} Ix,Iy 分别表示 X \mathscr{X} X Y \mathscr{Y} Y 上的恒同算子.
(2) 如果 T ∈ L ( X , Y ) T \in \mathscr{L}(\mathscr{X}, \mathscr{Y}) TL(X,Y), 又有 R 1 , R 2 ∈ L ( Y , X ) R_{1}, R_{2} \in \mathscr{L}(\mathscr{Y}, \mathscr{X}) R1,R2L(Y,X) 以及 A 1 ∈ A_{1} \in A1 C ( X ) , A 2 ∈ C ( Y ) \mathfrak{C}(\mathscr{X}), A_{2} \in \mathfrak{C}(\mathscr{Y}) C(X),A2C(Y), 使得 R 1 T = I x − A 1 , T R 2 = I y − A 2 R_{1} T=I_{x}-A_{1}, T R_{2}=I_{y}-A_{2} R1T=IxA1,TR2=IyA2,则 T ∈ F ( X , Y ) T \in \mathscr{F}(\mathscr{X}, \mathscr{Y}) TF(X,Y)

R 1 , R 2 R_1,R_2 R1,R2分别称为 T T T左右正则化子,意义为:Fredholm算子在左右正则化子的作用下确实与 I − 紧 算 子 I-紧算子 I相同

定理:若 T 1 ∈ F ( X , Y ) , T 2 ∈ F ( Y , Z ) T_{1} \in \mathscr{F}(\mathscr{X}, \mathscr{Y}), T_{2} \in \mathscr{F}(\mathscr{Y}, \mathscr{Z}) T1F(X,Y),T2F(Y,Z), 其中 X , Y \mathscr{X}, \mathscr{Y} X,Y, Z \mathscr{Z} Z 都是 Banach 空间, 则 T 2 T 1 ∈ F ( X , Z ) T_{2} T_{1} \in \mathscr{F}(\mathscr{X}, \mathscr{Z}) T2T1F(X,Z), 且 ind ⁡ ( T 2 T 1 ) = ind ⁡ ( T 1 ) + ind ⁡ ( T 2 ) \operatorname{ind}\left(T_{2} T_{1}\right)=\operatorname{ind}\left(T_{1}\right)+\operatorname{ind}\left(T_{2}\right) ind(T2T1)=ind(T1)+ind(T2)

线性微扰稳定性:若 T ∈ F ( X , Y ) T \in \mathscr{F}(\mathscr{X}, \mathscr{Y}) TF(X,Y), 则存在 ε > 0 \varepsilon>0 ε>0, 使得当 S ∈ S \in S L ( X , Y ) \mathscr{L}(\mathscr{X}, \mathscr{Y}) L(X,Y), 且 ∥ S ∥ < ε \|S\|<\varepsilon S<ε 时, 有 T + S ∈ F ( X , Y ) T+S \in \mathscr{F}(\mathscr{X}, \mathscr{Y}) T+SF(X,Y),并且 ind ⁡ ( T + S ) = ind ⁡ ( T ) \operatorname{ind}(T+S)=\operatorname{ind}(T) ind(T+S)=ind(T)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值