lingo求解最短路和最大流问题

运筹领域有很多有趣的问题,比如中国邮递员问题,最短路问题等等。lingo在求解规划问题、图与网络问题,对策决策问题,以及存储论等方面的求解有很好的应用。

  • 最短路问题
model: sets: cities/A,B1,B2,C1,C2,C3,D/; roads(cities,cities)/A B1,A B2,B1 C1,B1 C2,B1 C3,B2 C1, B2 C2,B2 C3,C1 D,C2 D,C3 D/:w,x; endsets data: w=2 4 3 3 1 2 3 1 1 3 4; enddata n=@size(cities); !城市的个数; min=@sum(roads:w*x); @for(cities(i)|i #ne#1 #and# i #ne#n: @sum(roads(i,j):x(i,j))=@sum(roads(j,i):x(j,i))); @sum(roads(i,j)|i #eq#1:x(i,j))=1; @sum(roads(i,j)|j #eq#n:x(i,j))=1; end 
  • 动态规划方法求解最短路问题
model: Title Dynamic Programming; sets: vertex/A,B1,B2,C1,C2,C3,C4,D1,D2,D3,E1,E2,E3,F1,F2,G/:L; road(vertex,vertex)/A B1,A B2,B1 C1,B1 C2,B1 c3,B2 C2,B2 C3,B2 C4, C1 D1,C1 D2,C2 D1,C2 D2,C3 D2,C3 D3,C4 D2,C4 D3, D1 E1,D1 E2,D2 E2,D2 E3,D3 E2,D3 E3, E1 F1,E1 F2,E2 F1,E2 F2,E3 F1,E3 F2,F1 G,F2 G/:D; endsets data: D=5 3 1 3 6 8 7 6 6 8 3 5 3 3 8 4 2 2 1 2 3 3 3 5 5 2 6 6 4 3; L=0,,,,,,,,,,,,,,,; enddata @for(vertex(i)|i#GT#1:L(i)=@min(road(j,i):L(j)+D(j,i))); end
  • 最大流问题
model:
sets:
node/1..6/;
road(node,node):w,a,f;
endsets
data:
a=0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0;
w=0 1 4 0 0 0
0 0 0 6 4 0
0 0 0 5 3 0
0 0 0 0 0 7
0 0 0 0 0 3
0 0 0 0 0 0;
enddata
max=vf;
@sum(road(i,j)|i#eq#1:f(i,j))=vf;
!�� 

 ;
!@sum(node(i):f(1,i))=vf;
@for(node(i)|i#gt#1 #and# i#ne#@size(node):
@sum(node(j):f(i,j)*a(i,j))=@sum(node(j):f(j,i)*a(j,i)));
@for(road(i,j):f(i,j)<w(i,j));
!�� 

 ;
!@for(road:@bnd(0,f,w));
end

为了缩短篇幅,代码请自行分行。

针对您提供的两个问题短路最大流),下面是相应的LINGO代码: ### 短路问题 LINGO 代码 假设我们使用Dijkstra算法来解决这个问题,但LINGO本身没有直接支持Dijkstra算法,可以通过设置一个小化目标函数来模拟这一过程。这里以城市之间的距离为例: ```lingo sets: cities /1..5/; roads(cities, cities) /1,2 1,3 2,3 2,4 3,4 3,5 4,5/: distance; endsets data: distance = 7 8 5 9 6 4 3; enddata ! 源节点目标节点; source = 1; target = 5; ! 定义变量; @for(cities(i): @bnd(0, x(i), 1)); x(source) = 1; x(target) = 0; min = total_distance; total_distance = @sum(roads(i,j): distance(i,j)*x(j)); ! 流守恒约束; @for(cities(k)| k #ne# source #and# k #ne# target: @sum(roads(i,k): x(i)) - @sum(roads(k,j): x(j)) = 0); ! 路径选择约束; @for(roads(i,j): y(i,j) <= x(i)); @for(roads(i,j): y(i,j) >= x(i) + x(j) - 1); @for(roads(i,j): y(i,j) <= x(j)); ! 输出路径; @for(roads(i,j): path(i,j) = @if(y(i,j) > 0.5, 1, 0)); end ``` ### 最大流问题 LINGO 代码 对于最大流问题,我们可以使用Ford-Fulkerson算法的思想来构建模型。以下是具体的LINGO代码: ```lingo sets: nodes /s, v1, v2, v3, t/; arcs(nodes, nodes) /s,v1 s,v2 v1,v2 v1,v3 v2,v3 v3,t/: capacity, flow; endsets data: capacity = 9 5 8 5 2 6; enddata max = max_flow; ! 目标函数; max_flow = @sum(arcs(i,'t'): flow(i,'t')); ! 流量守恒; @for(nodes(i)| i #ne# 's' #and# i #ne# 't': @sum(arcs(j,i): flow(j,i)) = @sum(arcs(i,j): flow(i,j))); ! 容量限制; @for(arcs(i,j): flow(i,j) <= capacity(i,j)); end ``` 以上两段代码分别解决了短路最大流问题。请注意,这些代码需要根据具体的数据进行调整。如果您有更多的数据或者不同的网络结构,请提供详细信息以便进一步优化代码。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆嵩

有打赏才有动力,你懂的。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值