opencv学习——imread()读取图像

     学习opencv 最开始一般都是从读取一张图片开始,在opencv 中我们可通过 imread() 来操作。首先我们看下imread 方法:

原型 
Mat imread( const String& filename, int flags )

第一个参数 filename: 表示图像的路径。

第二个参数 flags:表示读取图像的方式。

      IMREAD_UNCHANGED = -1,表示读取原图, 不进行任何改变

      IMREAD_GRAYSCALE = 0,表示以灰度图方式读取原图

      IMREAD_COLOR = 1,表示以RGB方式读取原图

       默认不加 flags 的话,表示不做改变读取原图。

enum ImreadModes {
       IMREAD_UNCHANGED            = -1, //如果设置,则返回的数据带有alpha通道(R,G,B,A 四个通道),否则没有alpha通道
       IMREAD_GRAYSCALE            = 0,  //如果设置,则将图像转换为单通道灰度图像
       IMREAD_COLOR                = 1,  //如果设置,则将图像转换成3通道BGR彩色图像
       IMREAD_ANYDEPTH             = 2,  //如果设置,则在输入具有相应深度时返回16位/32位图像,否则将其转换为8位
       IMREAD_ANYCOLOR             = 4,  //如果设置,则图像可能以任何颜色格式读取
       IMREAD_LOAD_GDAL            = 8,  //如果设置,使用gdal驱动程序加载图像
       IMREAD_REDUCED_GRAYSCALE_2  = 16, //如果设置,总是将图像转换为单通道灰度图像且图像大小减少1/2
       IMREAD_REDUCED_COLOR_2      = 17, //如果设置,总是将图像转换为3通道BGR彩色图像且图像大小减少1/2
       IMREAD_REDUCED_GRAYSCALE_4  = 32, //如果设置,总是将图像转换为单通道灰度图像且图像大小减少1/4
       IMREAD_REDUCED_COLOR_4      = 33, //如果设置,总是将图像转换为3通道BGR彩色图像且图像大小减少1/4
       IMREAD_REDUCED_GRAYSCALE_8  = 64, //如果设置,总是将图像转换为单通道灰度图像且图像大小减少1/8
       IMREAD_REDUCED_COLOR_8      = 65, //如果设置,总是将图像转换为3通道BGR彩色图像且图像大小减少1/8
       IMREAD_IGNORE_ORIENTATION   = 128 //如果设置,不会根据EXIF的方向标志旋转图像
     };

filename 图片路径编译器里面接受 单斜杆/, 双斜杆//, 以及反向双斜杆 \\。 不支持反向单斜杆\。

Mat SrcMat = imread("F:/build/test_app/correct.png"); //  单斜杆/

Mat SrcMat = imread("F://build//test_app//correct.png"); //  双斜杆//

Mat SrcMat = imread("F:\\build\\test_app\\correct.png"); //  反向双斜杆 \\

示例代码:

#include "stdafx.h"
#include <iostream>

#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace cv;
using namespace std;

int _tmain(int argc, _TCHAR* argv[])
{
	Mat SrcMat = imread("F:\\build\\test_app\\correct.png", IMREAD_UNCHANGED); 
    //IMREAD_GRAYSCALE:原图做为灰度图加载
	if(SrcMat.empty()) {
		cout << "SrcMat.empty" << endl;
		return -1;
	}

	
	imshow("image input", SrcMat);


	waitKey(0);

	return 0;
}
  • 8
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
分水岭算法(watershed algorithm)是一种用于图像分割的算法,可以自动将图像分割成不同的区域。OpenCV提供了分水岭算法的实现,可以通过调用cv2.watershed()函数来进行图像分割。 使用分水岭算法进行图像分割的基本步骤如下: 1. 读取图像并将其转换为灰度图像。 2. 对灰度图像进行二值化处理,得到前景(foreground)和背景(background)。 3. 对图像进行距离变换,得到每个像素到最近的背景像素的距离。 4. 对距离变换的结果进行阈值处理,得到一张标记(markers)图像。 5. 对标记图像进行分水岭算法处理,得到分割结果。 下面是一个简单的示例代码,演示了如何使用分水岭算法对图像进行分割: ```python import cv2 import numpy as np # 读取图像并转换为灰度图像 img = cv2.imread('image.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 对灰度图像进行二值化处理 ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) # 进行距离变换 dist_transform = cv2.distanceTransform(thresh, cv2.DIST_L2, 5) ret, markers = cv2.threshold(dist_transform, 0.7*dist_transform.max(), 255, 0) # 对标记图像进行分水岭算法处理 markers = cv2.watershed(img, markers) img[markers == -1] = [0,255,0] # 显示分割结果 cv2.imshow('Segmented Image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上面的代码中,我们首先读取一张名为"image.jpg"的图像,并将其转换为灰度图像。然后利用cv2.threshold()函数对灰度图像进行二值化处理,得到前景和背景。接下来,我们使用cv2.distanceTransform()函数进行距离变换,得到每个像素到最近的背景像素的距离。然后对距离变换的结果进行阈值处理,得到一张标记图像。最后,我们利用cv2.watershed()函数对标记图像进行分水岭算法处理,得到分割结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值