最长回文子序列的java解法

本文介绍了两种求解最长回文子序列的方法:中心法和动态规划算法。重点讲解了动态规划的步骤,包括最优子结构和状态转移方程,并给出了具体的动态规划方程实现。
摘要由CSDN通过智能技术生成

方法一:中心法(非常简单,易于理解)

public class Solution {
    public String longestPalindrome(String s) {
        char[] ch = s.toCharArray();
		String str = " ";
		String re = "";
		if(s.length()==0) return null;
		if(s.length()==1) return s;
		for (int i = 0; i < ch.length; i++) {
			re = getEvery(ch, i, i); // 当以一个字符为中轴也就是回文串为奇数时
			if (re.length() > str.length()) {
				str = re;
			}
			re = getEvery(ch, i, i + 1); // 当以当前和他后一个字符为轴心,也就是回文串为偶数时
			if (re.length() > str.length()) {
				str = re;
			}
		}
		return str;
	}

	public static String getEvery(char[] ch, int i, int j) {
		int length = ch.length;
		while (i >= 0 && j <= length - 1 && ch[i] == ch[j]) {
			i--;
			j++;
		}
		return String.valueOf(ch).substring(i + 1, j);
    }
}

方法二:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值