我谷P8220(I wanna win the race)

 前言:

小小吐槽一嘴:kid,你没事吧,连游戏模式都能选错。

吐槽完了,接下来是正文。

正文:

题目传送门

 相信你已经看完题目了,(虽然我也没办法验证),那么,勇敢的少年呀,准备好接受挑战了吗!(我好像还是没办法验证

看上去像个最短路对吧?但是 n≤109,建图会炸掉。

可以看到题目保证了 1<a,b<n,也就是说:

这两个可爱的小框框是不会有不可爱的B类点(大喜)!但是,注意,这里有但是,前提是不考虑 c。

这就是两点间的曼哈顿距离

计算很简单,∣x1−x2∣+∣y1−y2∣∣x1​−x2​∣+∣y1​−y2​∣(如果看不懂的话那么你可以去这里)。

这时,就有爱抬杠的宝宝会说了:“哎呀,你这说的都是不考虑C的情况,那如果有C肿么办呢?”

当当当当!

特判!

当 c≥n时,显然我们有 2 种策略:

1.经过B

2.绕过去

第一种路线:(1,1)→(1,5)→(5,5)

第二种路线:(1,1)→(1,6)→(5,6)→(5,5)。

显然我们对 2 种路线取最小值即可。

是——代码时刻!

代码实现

#include<bits/stdc++.h>
using namespace std ;
long long n , a , b , c ;
int main(){
	scanf("%d%d%d%d" , &n , &a , &b , &c) ;
	if(c >= n){
		long long sum = c + n + (c - n + 1) ; //绕路的走法,当时没有化简
		long long ans = n - 1 + (b - a + 1) * 2 + (n - (b - a + 1)) ; //直接穿过 B 类点的走法,无化简
		if(sum > ans) printf("%d" , ans) ;
		else printf("%d" , sum) ; //判断谁最小
	}
	else printf("%d" , n + n - 1) ; //当 c < n 时的走法
	return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值