前言:
小小吐槽一嘴:kid,你没事吧,连游戏模式都能选错。
吐槽完了,接下来是正文。
正文:
相信你已经看完题目了,(虽然我也没办法验证),那么,勇敢的少年呀,准备好接受挑战了吗!(我好像还是没办法验证)
看上去像个最短路对吧?但是 n≤109,建图会炸掉。
可以看到题目保证了 1<a,b<n,也就是说:
这两个可爱的小框框是不会有不可爱的B类点(大喜)!但是,注意,这里有但是,前提是不考虑 c。
这就是两点间的曼哈顿距离。
计算很简单,∣x1−x2∣+∣y1−y2∣∣x1−x2∣+∣y1−y2∣(如果看不懂的话那么你可以去这里)。
这时,就有爱抬杠的宝宝会说了:“哎呀,你这说的都是不考虑C的情况,那如果有C肿么办呢?”
当当当当!
特判!
当 c≥n时,显然我们有 2 种策略:
1.经过B
2.绕过去
第一种路线:(1,1)→(1,5)→(5,5)
第二种路线:(1,1)→(1,6)→(5,6)→(5,5)。
显然我们对 2 种路线取最小值即可。
是——代码时刻!
代码实现
#include<bits/stdc++.h>
using namespace std ;
long long n , a , b , c ;
int main(){
scanf("%d%d%d%d" , &n , &a , &b , &c) ;
if(c >= n){
long long sum = c + n + (c - n + 1) ; //绕路的走法,当时没有化简
long long ans = n - 1 + (b - a + 1) * 2 + (n - (b - a + 1)) ; //直接穿过 B 类点的走法,无化简
if(sum > ans) printf("%d" , ans) ;
else printf("%d" , sum) ; //判断谁最小
}
else printf("%d" , n + n - 1) ; //当 c < n 时的走法
return 0 ;
}