dgl-ke使用方法和参数

该博客介绍了如何利用DGLKE工具包进行知识图谱嵌入的训练和预测。首先,使用`dglke_train`命令配置TransR模型,设置数据路径、批大小、学习率等参数进行模型训练。训练完成后,运用`dglke_predict`进行链接预测,指定模型路径、格式、评分函数和TopK。最后,通过`dglke_emb_sim`计算实体之间的相似度,提供相似度检索。整个流程涵盖了知识图谱的建模、训练和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://dglke.dgl.ai/doc/emb_sim.html

dglke_train --model_name TransR --data_path data/own_kg --data_files train.txt test.txt valid.txt --format raw_udd_hrt --dataset own_kg --batch_size 1000 --log_interval 100 --neg_sample_size 200 --regularization_coef=1e-9 --hidden_dim 400 --gamma 19.9 --lr 0.25 --batch_size_eval 16 --test -adv --gpu 1 --max_step 20000


dglke_predict --model_path /root/lv_my_task/ckpts/TransE_l1_own_kg_0 --format 'h_r_*' --data_files head.list rel.list --score_func logsigmoid --topK 5 --raw_data --entity_mfile /root/lv_my_task/data/own_kg/entities.tsv --rel_mfile /root/lv_my_task/data/own_kg/relations.tsv


dglke_emb_sim --emb_file /root/lv_my_task/ckpts/TransE_l1_own_kg_0/own_kg_TransE_l1_entity.npy --format 'l_*' --data_files head.list  --topK 50 --raw_data --mfile /root/lv_my_task/data/own_kg/entities.tsv

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值