基本算法之概率算法
一.概率算法的基本思想
大致执行步骤如下:
1.将问题转化为相应的几何图形S,S的面积容易计算,问题的结果往往对应几何图形中的某一部分。
2.然后,向几何图形中随机撒点。
3.统计几何图形S和S1中的点数,根据S和S1面积的关系及图形中的点数来计算得到的结果。
4.判断上述结果是否在需要的精度之内,如果未达到精度则执行步骤2;如果达到精度,则输出结果。
概率算法大致分为4种形式:
1)数值概率算法;
2)蒙特卡罗(Monte Carlo)算法;
3)拉斯维加斯(Las Vegas)算法;
4)舍伍德(Sherwood)算法;
二.典型实例
蒙特卡罗算法是一个典型的应用,用来计算圆周率π。下面就通过一个实例来分析蒙特卡罗概率算法的应用。
1.分析
使用蒙特卡罗算法计算圆周率π的思想其实很简单,首先分析一个半径为1的圆,如下图所示:
图中的面积的计算公式如下:
S圆=πr^2
图中阴影部分是一个圆的1/4,因此阴影面积的计算公式如下:
S阴影=S圆/4=(πr^2)/4=π/4
图中的正方形的面积为:
S正方形=r^2=1
按照图示建立一个坐标系。如果均匀地向正方形内撒点,那么落入阴影部分的点数与全部的点数之比为:
S阴影/S正方形=π/4
根据概率统计的规律,只要撒点数足够多,那么将得到近似的结果。通过这个原理可以计算圆周率π的近似值,这就是蒙特卡罗π的算法。
2.参考代码
import java.util.Scanner;
public class PI {
static double MontePI(int n) {
double PI;
double x,y;
int i,sum;
sum = 0;
for(i=1;i<=n;i++) {
x=Math.random();
y=Math.random();
if(x*x+y*y <= 1) {
sum++;
}
}
PI=4.0*sum/n;
return PI;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
int n;
double PI;
System.out.println("蒙特卡罗概率算法计算π:");
System.out.println("输入点的数量:");
Scanner input = new Scanner(System.in);
n=input.nextInt();
PI=MontePI(n);
System.out.println("PI="+PI);
}
}
3.结果展示