spark streaming中窗口函数的简单实用windowOpObj

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

object windowOpObj {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("windowOpObj").setMaster("local[*]")
    //创建
   val ssc= new StreamingContext(conf,Seconds(5))

    //存储不同(之前)批次的RDD数据
    ssc.checkpoint("D:\\数据\\spark")
    //获取数据
    val datream = ssc.socketTextStream("192.168.88.130",8888)
    //调用窗口函数来聚合多个批次的数据,现在的操作基于每一个批次
    val tupls = datream.flatMap(_.split(" ")).map((_,1))
    //设置窗口长度以及滑动时间间隔
    //处理多个批次,2参数是窗口长度,第3个参数是窗口的滑动时间,可以计算指定范围内的批次数据
   val res= tupls.reduceByKeyAndWindow((x:Int,y:Int)=>(x+y),Seconds(15),Seconds(10))
    res.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值