一篇搞懂DeepSeek:三种部署方案+版本对比,普通用户这样选!

大家好!最近爆火的国产AI模型DeepSeek,凭借强大的推理能力和亲民价格,成了科技圈的新顶流。但不少朋友反馈:官网卡到怀疑人生,本地部署门槛高到离谱……别急!今天这篇笔记,带你解锁网页在线、本地部署、硅基流动部署三种方案,并分析各版本优缺点,帮你轻松选对姿势!

前排提示,文末有大模型AGI-CSDN独家资料包哦!

一、网页在线:快速尝鲜,但需拼手速

适用人群:想快速体验、无需复杂操作的小白。
操作步骤

  1. 访问DeepSeek官网(https://chat.deepseek.com/),直接输入问题即可对话。

  2. 支持联网搜索和推理模式,适合实时信息查询。

优点

  • 零门槛,打开即用。

  • 支持联网,回答更实时。

缺点

  • 服务器超载:10次提问8次卡顿,体验像抽盲盒。

  • 功能受限:无法自定义模型参数,高级玩家慎选。

适合场景:偶尔提问、测试简单任务(如查资料、简单的提问)。

二、本地部署:极致掌控,但硬件劝退

适用人群:技术极客、有高性能设备的开发者。
操作步骤

1、 选择模型版本

  • 满血版R1(671B参数):需16张A100显卡+2TB固态硬盘,土豪专属。

  • 蒸馏版(7B/14B参数):RTX 4060显卡即可运行,但效果缩水。

2、 通过OllamavLLM框架部署,支持终端或可视化界面交互。

优点

  • 完全私有化:数据不经过第三方,安全性高。

  • 可定制性强:支持联网、知识库集成等高级功能。

缺点

  • 硬件要求逆天:满血版部署成本超百万,蒸馏版性能打骨折。

  • 技术门槛高:需熟悉命令行和模型调参。

适合场景:企业级应用、科研项目或硬核玩家折腾。

三、硅基流动+华为云:性价比之王,小白首选

适用人群:普通用户、想低成本用满血模型的务实派。
操作步骤

  1. 注册硅基流动账号:官网(https://www.siliconflow.com/zh/home)用手机号登录

  2. 获取API密钥:在平台生成密钥,复制到ChatBox客户端(支持Win/Mac/手机)。

  3. 选择DeepSeek-R1满血版,开启丝滑对话!

优点

  • 成本低:注册送14元,1元≈250万token,够用半个月。

  • 满血体验:直接调用671B参数模型,效果碾压官网蒸馏版。

  • 操作简单:5分钟搞定,无需代码知识。

缺点

  • 依赖网络:断网时无法使用。

  • 部分高阶功能(如联网搜索)暂未开放。

适合场景:日常写作、编程辅助、教育辅导等高频需求。

四、DeepSeek版本对比:选对才能爽!

1、 V1/V2系列

  • 优势:代码能力强,适合开发者。

  • 劣势:推理和多模态能力弱,已过时。

2、 V2.5/V3系列

  • 优势:数学推理和联网搜索提升,性能对标GPT-4。

  • 劣势:API功能受限,硬件要求高。

3、 R1系列

  • 满血版(671B):推理能力超OpenAI o1,但仅限云服务部署。

  • 蒸馏版(7B/14B):本地可跑,但效果仅为满血版的30%。

五、普通用户怎么选?闭眼抄作业!

为方便大家快速决策,我们整理了一张极简对比表,建议收藏保存!

部署方案优点缺点
网页在线零门槛即开即用 ,支持联网实时搜索服务器卡顿严重,无法自定义模型参数
本地部署数据绝对私有安全 ,支持高阶功能定制(本地数据库搭建硬件成本高达百万级 , 技术门槛极高
硅基流动+华为云低成本用满血版模型 , 5分钟一键部署依赖网络环境 , 部分高级功能未开放

结语

DeepSeek的爆火,不仅是技术的胜利,更是国产AI生态的突破。无论你是小白还是极客,总有一种姿势能解锁它的潜力!赶紧试试硅基流动方案,体验“人均AGI”的快乐吧!

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

内容概要:本文针对DeepSeek这类AI模型在本地部署过程中可能出现的问题进行了详细阐述,主要涉及八大方面的问题及其应对策略。首先指出硬件资源不足是首要障碍,具体为显存不足和兼容性问题,给出解决方案如优化模型或增加显存量来解决性能低下情况。其次提到软件层面上的依赖项冲突难题,强调了版本匹配的重要性以及创建隔离环境防止污染的做法。再次论述模型文件可能存在的错误和相应的检查下载方式和文件校验等措施来确保文件完整性和配置正确。另外,在部署环境中,对关键推理参数不当设置造成的失误进行了讨论并建议从小规模测试逐步调优的方法,对于企业特有的防火墙、权限等限制提出使用代理或者进行容器化部署的方法解决。此外还提及了开放网络上潜在的安全风险,提醒开发者采取反向代理加身份认证等方式来保护API服务的安全。性能优化方面指出了推理解析效率低下的原因并提供了诸如批量推理、模型压缩的技术优化思路。最后提到了分布式部署中遇到的多节点通信延迟等问题给出了改进通信协议和引入负载均衡器的办法,并且推荐了一套科学合理的部署流程。 适合人群:有意向将大型复杂AI模型如DeepSeek部署在本地环境的研发团队或工程师。 使用场景及目标:旨在帮助技术人员在面对DeepSeek模型本地化时能够顺利规避常见陷阱和技术障碍,成功完成部署。这既适用于初涉机器学习领域的工程师们,也能为经验丰富的专家提供有价值的技术细节提示。 其他说明:文中提供的建议不仅于理论知识,更是来源于实际项目实践积累,因此具有较高的可靠性和实用性。每一步骤均提供了具体的解决办法而不是泛泛而谈,并且鼓励用户遇到疑难杂症的时候参考相关社区资源进一步探讨和寻求支援。
### 部署DeepSeek及其插件 对于希望在本地环境中部署DeepSeek并集成Ollama和Page Assist插件的新手而言,理解整个过程至关重要。虽然具体的安装指南可能依赖于官方文档或特定版本的要求[^1],下面提供了一个简化版的指导流程。 #### 准备工作环境 确保操作系统支持所需软件包的安装,并拥有管理员权限来执行命令。通常情况下,在Linux发行版上操作更为简便,因为大多数大数据工具都于此平台进行了优化。 #### 安装必要的依赖项 在此之前,需下载并配置相应的资源库以便获取最新版本的相关组件。例如,通过YUM更新源可以方便地管理第三方仓库中的软件包: ```bash sudo yum install bootstrap.rpm ``` 这条指令会自动处理Cloudera远程Yum存储库的加入,从而使得后续Hadoop生态系统的组件更容易被找到和安装。然而,针对DeepSeek本身以及其特有的扩展模块如Ollama和Page Assist,则需要访问不同的分发渠道或者遵循开发者社区提供的指引。 #### 获取DeepSeek及相关插件 前往官方网站或其他可信来源处下载适合当前计算节点架构(比如AMD64)的二进制文件。注意检查校验码以验证数据完整性。对于附加功能部分,同样要确认这些额外部件能够兼容所的核心框架版本。 #### 执行安装脚本 一旦所有必需品准备就绪,按照提示运行安装程序。这一步骤可能会涉及到设置环境变量、初始化数据库连接以及其他定制化项的择。务必仔细阅读每一页说明文字,特别是当遇到涉及安全性和性能调优参数设定的时候。 #### 启动服务与测试连通性 完成上述步骤之后,启动各个子系统并通过浏览器界面或者其他客户端工具尝试建立初步联系。如果一切正常运作的话,应该可以看到默认主页加载成功并且能响应本查询请求。 #### 调整配置实现最佳体验 最后但并非最不重要的是,依据实际应用场景调整各项属性直至达到理想状态为止。这里不仅限于修改监听端口位置或是启用更多高级特性;还包括定期备份重要资料以防意外丢失等问题发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值