1237:求排列的逆序数
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 6732 通过数: 2739
【题目描述】
在Internet上的搜索引擎经常需要对信息进行比较,比如可以通过某个人对一些事物的排名来估计他(或她)对各种不同信息的兴趣,从而实现个性化的服务。
对于不同的排名结果可以用逆序来评价它们之间的差异。考虑1,2,…,n的排列i1,i2,…,in,如果其中存在j,k,满足j<k,且ij>ik,那么就称(ij,ik)是这个排列的一个逆序。
一个排列含有逆序的个数称为这个排列的逆序数。例如排列 263451 含有8个逆序(2,1),(6,3),(6,4),(6,5),(6,1),(3,1),(4,1),(5,1),因此该排列的逆序数就是8。显然,由1,2,…,n 构成的所有n!个排列中,最小的逆序数是0,对应的排列就是1,2,…,n;最大的逆序数是n(n−1)/2,对应的排列就是n,(n−1),…,2,1。逆序数越大的排列与原始排列的差异度就越大。
现给定1,2,…,n的一个排列,求它的逆序数。
【输入】
第一行是一个整数n,表示该排列有n个数(n<=100000)。
第二行是n个不同的正整数,之间以空格隔开,表示该排列。
【输出】
输出该排列的逆序数。
【输入样例】
6
2 6 3 4 5 1
【输出样例】
8
【分析】
这道题,首先能想到的就是枚举,i∈[0,n-1],j∈[i+1,n],约束条件:a[i]>a[j],计数+1,然而n的数据范围是10^5,直接枚举,O(n^2),铁定超时。正确率60%的代码如下:
//60% 的超时版
#include <stdio.h>
#define N 100010
int a[N];
int main()
{
int i,j,n,cnt=0;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(a[i]>a[j])
cnt++;
}
}
printf("%d\n",cnt);
return 0;
}
该题放到的分治法,显然可以用到归并排序,在归并排序的过程中,计算逆序对。归并排序算法的效率是O(n*lgn)。
以样例数据为例,先将263451划分为两个部分,第一部分263,第二部分451,假设现在两个部分均已排序完毕,第一部分为236,第二部分为145,则令i=2,j=1,比较i,j的值,统计逆序对。可以找出(2,1),(3,1),(6,1),(6,4),(6,5)。同理在递归排序第一部分时,可以找出(6,3),递归排序第二部分时,可以找出(4,1)和(5,1)。
【参考代码】
#include <stdio.h>
#define N 100010
long long a[N],tmp[N];
long long cnt;
void merge(long long left,long long mid,long long right)
{
long long i,j,k;
i=left;
j=mid+1;
k=left;
while(i<=mid && j<=right)
{
if(a[i]>a[j])
{
cnt+=j-k;
tmp[k++]=a[j++];
}
else
{
tmp[k++]=a[i++];
}
}
while(i<=mid)
tmp[k++]=a[i++];
while(j<=right)
tmp[k++]=a[j++];
for(i=left;i<=right;i++)
a[i]=tmp[i];
}
void merge_sort(long long left,long long right)
{
long long mid;
if(left==right)
return;
mid=(left+right)/2;
merge_sort(left,mid);
merge_sort(mid+1,right);
merge(left,mid,right);
}
int main()
{
int i,n;
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%lld",&a[i]);
merge_sort(1,n);
printf("%lld\n",cnt);
return 0;
}