机器学习中对变量数据进行Log变化

在机器学习中,若数据不满足正态分布,可通过Log变换使其接近正态分布,以优化模型效果。偏度是衡量数据分布不对称的指标,Python的skew()函数可计算偏度。对于偏度较大的特征,使用numpy的log1p()函数进行预处理,能有效压缩数据并避免复值问题。最终预测后,通过expm1()函数进行数据还原。
摘要由CSDN通过智能技术生成

机器学习算法中,一些算法要求数据符合正态分布,但是对于一些标签和特征来说,分布不一定符合正态分布,这个要怎么处理呢?
一个现在比较常见的方式是将数据进行Log变换,即取对数,这样可以使得数据在一定程度上符合正态分布的特征。
效果如下图所示:
(转换前)
在这里插入图片描述
(转换后)
在这里插入图片描述
计算偏度较大的features
偏度,是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。偏度亦称偏态,偏态系数。
其计算公式为:
在这里插入图片描述
在python中用skew()计算特征分布的偏度,

#log transform skewed numeric features:
#找出df中数值型的变量
numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index
skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna()))
#compute skew
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值