一、写在前面
一直都没有写公开心得的习惯,因为一路上都在不断犯错,错误的理解,错误的观点,错误的代码,自己并非科班出身(学了7年的规划学科),常常担心会误导了别人。最近开始找工作,发现保持输出,学会学习表达和交流也是一项重要的能力。我要做一些大胆的事!(这里指发一篇可能会有很多错的心得)!由于学识尚浅,假如各位有缘人能看到这篇文章,对于写的不对的地方请不吝赐教,谢谢!
看到飞桨的课程其实是在一些公众号上(这年头谁没几个贩卖焦虑的公众号)。而被飞桨的课程吸引到则是因为:1、免费课程 2、免费的GPU(Tesla V100) 3、百度的名声 4、百度的结业证书 5、丰厚的奖品。但是核心因素还是因为GPU,自己的老年960实在没办法做正经训练,然而由于AIStudio中只能选择paddlepaddle的框架,所以希望通过课程能够快速上手飞桨。明明很功利地来的,使用之后却被圈粉了。感兴趣的可以直接搜索paddlepaddle的公众号,或者从Aistudio的官网上关注最新的或者往期课程https://aistudio.baidu.com/aistudio/index。
下面进入正题,这门课程主要是对深度学习进行目标检测的pipline进行讲解,相比自己以前上过的其他课程我觉得更加用心也很细致,所有的代码可以直接在AIstudio上运行,也可以下载至本地。同时课程包含notebook以及对应的视频讲解,如果时间比较紧张也可以只看notebook,遇到瓶颈再看视频。但是每个人需求不同,还是要自己体验了才知道好坏。课程的最后提供了一周的时间开展CV练习赛:AI识虫。作为CV领域的经典任务:目标检测,与不久前Kaggle的小麦检测比赛较为相似,并且很好地同课程的内容相契合,课程中覆盖的大部分内容能够在比赛代码中得到体现。所以在此对比赛进行回顾,也是借此对学习内容进行巩固。
二、数据
比赛使用林业病虫数据集,该数据集提供了2183张图片,其中训练集1693张,验证集245,测试集245张,包含7中昆虫,分别是Boerner、Leconte、Linnaeus、acuminatus、armandi、coleoptera和linnaeus。直接在AIStudio的公开数据集中搜索“昆虫数据集”或访问以下链接:https://aistudio.baidu.com/aistudio/datasetdetail/19638 即可获得数据集。
对于训练集和验证集,每张图片还对应一个格式为xml的标注文件,主要内容包含图片尺寸,Grou