题目描述
n 皇后问题 研究的是如何将 n
个皇后放置在 n × n
的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n
,返回 n 皇后问题 不同的解决方案的数量。
示例 1:
输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:1
提示:
1 <= n <= 9
解题方法
方法一:dfs回溯
这道题和第51题几乎一样,结果只需要提供解决方案的数量。我们可以稍微改动一下代码,实现上述功能。(没看过第51题的童鞋可以先看这道)。
java代码
public int totalNQueens(int n) {
if (n == 0) {
return 0;
}
// 以下数组记录列、对角线是否已被棋子占用
// 列
int[] col = new int[n];
// 右上到左下的对角线
int[] dpos = new int[2 * n - 1];
// 左上到右下的对角线
int[] dneg = new int[2 * n - 1];
// total数组引用传参,total[0]记录结果,total[0]初始化时默认值为0
int[] total = new int[1];
dfs(total, col, dpos, dneg, n, 0);
return total[0];
}
// index代表当前遍历深度,即棋盘行数
public void dfs(int[] total, int[] col, int[] dpos, int[] dneg, int n, int index) {
if (index == n) {
total[0]++;
return;
}
// i代表列
for (int i = 0; i < n; i++) {
// 检查该列和对角线是否已被前面放置的棋子占用
if (col[i] == 1 || dpos[index + i] == 1 || dneg[index - i + n - 1] == 1) {
continue;
}
col[i] = 1;
dpos[index + i] = 1;
dneg[index - i + n - 1] = 1;
dfs(total, col, dpos, dneg, n, index + 1);
col[i] = 0;
dpos[index + i] = 0;
dneg[index - i + n - 1] = 0;
}
}
复杂度分析
时间复杂度:
O
(
N
2
)
O(N^2)
O(N2),需要遍历整个n×n棋盘。
空间复杂度:
O
(
N
)
O(N)
O(N),一是需要提供三个数组,二是dfs会遍历n层。
方法二:交换位置递归
下面我来提供另一种dfs的思路,我们可以用nums
数组记录每一行的棋子放置的位置,假设nums
数组下标为i
,下标i
代表行,nums[i]
的值代表列,nums[i]
代表第i
行的棋子放置在第nums[i]
列,我们初始时给nums
数组按照下标从0
到n-1
赋值,即nums[0] = 0,nums[1] = 1 ... nums[n - 1] = n - 1
。
这样我们每次递归时,只需要按行交换某一列放置棋子的位置。例如,nums[0]
与后面的列nums[i](0 <= i < n)
交换位置后,nums[1]
再与后面的列nums[i](1 <= i < n)
交换位置,直到所有的行都与对应列交换位置后,我们需要验证交换位置后的数组是否符合n皇后问题的规则。那么怎么验证呢?
我们可以看出行和列规则不需要验证了,只需要验证对角线的规则。可以看下图。
如上图,我们设一个皇后的位置为
(
x
1
,
y
1
)
(x_{1},y_{1})
(x1,y1),另一个皇后的位置为
(
x
2
,
y
2
)
(x_{2},y_{2})
(x2,y2)。如果
(
x
2
,
y
2
)
(x_{2},y_{2})
(x2,y2)出现在
(
x
1
,
y
1
)
(x_{1},y_{1})
(x1,y1)对应左上、右上、左下、右下的方向上,那么此时必然不符合n皇后问题的规则。
由此我们可以得出以下规律,当 ∣ x 1 − x 2 ∣ = ∣ y 1 − y 2 ∣ |x_{1} - x_{2}| = |y_{1} - y_{2}| ∣x1−x2∣=∣y1−y2∣时,不符合n皇后问题的规则。
有了上面的规律,我们就可以写代码实现了。
java代码
public int totalNQueens(int n) {
if (n == 0) {
return 0;
}
// nums[i]下标i代表行,nums[i]的值代表列,nums[i]代表第i行的棋子放置在第nums[i]列
int[] nums = new int[n];
// 初始化每一行放置棋子后对应列的位置,实际上nums[0...n-1]的值只要不重复就行,毕竟不同行的棋子不能放在同一列
for (int i = 0; i < n; i++) {
nums[i] = i;
}
// total数组引用传参,total[0]记录结果
int[] total = new int[1];
swapCore(total, nums, 0, n);
return total[0];
}
public void swapCore(int[] total, int[] nums, int index, int n) {
if (index == n) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
// Math.abs(第i行 - 第j行) == Math.abs(第nums[i]列 - 第nums[j]列),表示第i行放置的棋子和第j行放置的棋子在同一条对角线上,不符合规定
if (Math.abs(i - j) == Math.abs(nums[i] - nums[j])) {
return;
}
}
}
total[0]++;
return;
}
for (int i = index; i < n; i++) {
// 第index行选择某一列放置棋子
swapArray(nums, index, i);
// 后面的行就不能再选择前面的行放置棋子对应的列了,因为下标index + 1 ~ n - 1之间的nums数组对应的值里没有前面选择过的值
swapCore(total, nums, index + 1, n);
// 第index行回退到选择某一列放置棋子前的状态
swapArray(nums, index, i);
}
}
// 数组值交换
public void swapArray(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
复杂度分析
时间复杂度:
O
(
N
2
)
O(N^2)
O(N2),需要进行
N
N
N次dfs遍历,每次需要整体遍历一次nums
数组。
空间复杂度:
O
(
N
)
O(N)
O(N)。需要提供一个数组,dfs遍历
N
N
N次。
相似题目
- 个人公众号
- 个人小游戏