[leetcode] 52. N 皇后 II

题目描述

n 皇后问题 研究的是如何将 n 个皇后放置在 n × n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

示例 1:
在这里插入图片描述

输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:1

提示:

  • 1 <= n <= 9

解题方法

方法一:dfs回溯

这道题和第51题几乎一样,结果只需要提供解决方案的数量。我们可以稍微改动一下代码,实现上述功能。(没看过第51题的童鞋可以先看这道)。

java代码

public int totalNQueens(int n) {
    if (n == 0) {
        return 0;
    }
    // 以下数组记录列、对角线是否已被棋子占用
    // 列
    int[] col = new int[n];
    // 右上到左下的对角线
    int[] dpos = new int[2 * n - 1];
    // 左上到右下的对角线
    int[] dneg = new int[2 * n - 1];
    // total数组引用传参,total[0]记录结果,total[0]初始化时默认值为0
    int[] total = new int[1];
    dfs(total, col, dpos, dneg, n, 0);
    return total[0];
}

// index代表当前遍历深度,即棋盘行数
public void dfs(int[] total, int[] col, int[] dpos, int[] dneg, int n, int index) {
    if (index == n) {
        total[0]++;
        return;
    }
    // i代表列
    for (int i = 0; i < n; i++) {
        // 检查该列和对角线是否已被前面放置的棋子占用
        if (col[i] == 1 || dpos[index + i] == 1 || dneg[index - i + n - 1] == 1) {
            continue;
        }
        col[i] = 1;
        dpos[index + i] = 1;
        dneg[index - i + n - 1] = 1;
        dfs(total, col, dpos, dneg, n, index + 1);
        col[i] = 0;
        dpos[index + i] = 0;
        dneg[index - i + n - 1] = 0;
    }
}

复杂度分析

时间复杂度: O ( N 2 ) O(N^2) O(N2),需要遍历整个n×n棋盘。
空间复杂度: O ( N ) O(N) O(N),一是需要提供三个数组,二是dfs会遍历n层。

方法二:交换位置递归

下面我来提供另一种dfs的思路,我们可以用nums数组记录每一行的棋子放置的位置,假设nums数组下标为i,下标i代表行,nums[i]的值代表列,nums[i]代表第i行的棋子放置在第nums[i]列,我们初始时给nums数组按照下标从0n-1赋值,即nums[0] = 0,nums[1] = 1 ... nums[n - 1] = n - 1

这样我们每次递归时,只需要按行交换某一列放置棋子的位置。例如,nums[0]与后面的列nums[i](0 <= i < n)交换位置后,nums[1]再与后面的列nums[i](1 <= i < n)交换位置,直到所有的行都与对应列交换位置后,我们需要验证交换位置后的数组是否符合n皇后问题的规则。那么怎么验证呢?

我们可以看出行和列规则不需要验证了,只需要验证对角线的规则。可以看下图。
在这里插入图片描述
如上图,我们设一个皇后的位置为 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1),另一个皇后的位置为 ( x 2 , y 2 ) (x_{2},y_{2}) (x2,y2)。如果 ( x 2 , y 2 ) (x_{2},y_{2}) (x2,y2)出现在 ( x 1 , y 1 ) (x_{1},y_{1}) (x1,y1)对应左上、右上、左下、右下的方向上,那么此时必然不符合n皇后问题的规则。

由此我们可以得出以下规律,当 ∣ x 1 − x 2 ∣ = ∣ y 1 − y 2 ∣ |x_{1} - x_{2}| = |y_{1} - y_{2}| x1x2=y1y2时,不符合n皇后问题的规则。

有了上面的规律,我们就可以写代码实现了。

java代码

public int totalNQueens(int n) {
    if (n == 0) {
        return 0;
    }
    // nums[i]下标i代表行,nums[i]的值代表列,nums[i]代表第i行的棋子放置在第nums[i]列
    int[] nums = new int[n];
    // 初始化每一行放置棋子后对应列的位置,实际上nums[0...n-1]的值只要不重复就行,毕竟不同行的棋子不能放在同一列
    for (int i = 0; i < n; i++) {
        nums[i] = i;
    }
    // total数组引用传参,total[0]记录结果
    int[] total = new int[1];
    swapCore(total, nums, 0, n);
    return total[0];

}

public void swapCore(int[] total, int[] nums, int index, int n) {
    if (index == n) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < i; j++) {
                // Math.abs(第i行 - 第j行) == Math.abs(第nums[i]列 - 第nums[j]列),表示第i行放置的棋子和第j行放置的棋子在同一条对角线上,不符合规定
                if (Math.abs(i - j) == Math.abs(nums[i] - nums[j])) {
                    return;
                }
            }
        }
        total[0]++;
        return;
    }
    for (int i = index; i < n; i++) {
        // 第index行选择某一列放置棋子
        swapArray(nums, index, i);
        // 后面的行就不能再选择前面的行放置棋子对应的列了,因为下标index + 1 ~ n - 1之间的nums数组对应的值里没有前面选择过的值
        swapCore(total, nums, index + 1, n);
        // 第index行回退到选择某一列放置棋子前的状态
        swapArray(nums, index, i);
    }
}

// 数组值交换
public void swapArray(int[] nums, int i, int j) {
    int temp = nums[i];
    nums[i] = nums[j];
    nums[j] = temp;
}

复杂度分析

时间复杂度: O ( N 2 ) O(N^2) O(N2),需要进行 N N N次dfs遍历,每次需要整体遍历一次nums数组。
空间复杂度: O ( N ) O(N) O(N)。需要提供一个数组,dfs遍历 N N N次。

相似题目

[leetcode] 51. N 皇后


  • 个人公众号
    个人公众号
  • 个人小游戏
    个人小游戏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会飞的大鱼人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值