深度学习基础知识
文章平均质量分 58
lvnacp
这个作者很懒,什么都没留下…
展开
-
深度学习之L1,L2正则化
L1正则化与L2正则化原创 2024-07-31 11:49:28 · 244 阅读 · 0 评论 -
深度学习之Focal Loss损失函数
focal Loss损失函数介绍原创 2024-07-31 11:52:32 · 268 阅读 · 0 评论 -
深度学习中的梯度问题:消失与爆炸的挑战与对策
深度学习中的梯度消失和梯度爆炸原创 2024-07-29 18:00:41 · 168 阅读 · 0 评论 -
卷积神经网络反向传播计算
神经网络,反向传播原创 2024-07-23 17:38:52 · 116 阅读 · 0 评论 -
详细介绍:深度学习优化器
深度学习优化器介绍原创 2024-07-23 21:12:39 · 750 阅读 · 0 评论 -
突破小目标检测的挑战:现状分析与解决方案
提高小目标检测精度原创 2024-07-19 19:42:20 · 925 阅读 · 0 评论 -
卷积操作空间不变性
卷积操作具有空间不变性(也称为平移不变性)的特性,这使得卷积神经网络(CNN)在处理图像和其他数据时非常有效。原创 2024-07-16 23:00:03 · 147 阅读 · 0 评论 -
感受野计算
感受野(Receptive Field)是指卷积神经网络中单个神经元能看到的输入图像的区域大小。计算感受野的大小需要追踪从输入层到指定层的信号传递过程。原创 2024-07-16 22:50:52 · 166 阅读 · 0 评论 -
卷积层详细介绍
卷积层详细介绍原创 2024-07-16 22:45:21 · 275 阅读 · 0 评论