yolov8改进之CBAM注意力机制

yolov8官方代码中关于CBAM中关于通道注意力机制仅实现的平均池化操作,下面代码中实现的论文整体代码

使用自己的数据集用CBAM注意力机制,涨点3%以上。

概述

CBAM引入了两种注意力机制:通道注意力和空间注意力。通道注意力有助于增强不同通道的特征表示,而空间注意力有助于提取空间中不同位置的关键信息。
在这里插入图片描述

通道注意力模块

在这里插入图片描述
通过全局最大池化和全局平均池化–>全连接层–>Sigmoid激活–>注意力加权操作实现。

空间注意力模块

在这里插入图片描述
和上述通道注意力机制一样

YOLOV8官方实现代码

在ultralytics-8.2.0\ultralytics\nn\tasks.py中的parse_model()函数中添加
在这里插入图片描述

        elif m is CBAM:
            c1, c2 = ch[f], args[0]
            if c2 != nc:
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, *args[1:]]

在ultralytics-8.2.0\ultralytics\cfg\models\v8文件夹下创建yolov8_CBAM.yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
#  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
#  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
#  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
#  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
  - [-1, 1, CBAM, [512]]

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 16 (P3/8-small)
  - [-1, 1, CBAM, [256]]

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 20 (P4/16-medium)
  - [-1, 1, CBAM, [512]]

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 24 (P5/32-large)
  - [-1, 1, CBAM, [1024]]

  - [[17, 21, 25], 1, Detect, [nc]]  # Detect(P3, P4, P5)

运行结果

                  from  n    params  module                                       arguments                     
  0                  -1  1      1392  ultralytics.nn.modules.conv.Conv             [3, 48, 3, 2]                 
  1                  -1  1     41664  ultralytics.nn.modules.conv.Conv             [48, 96, 3, 2]                
  2                  -1  2    111360  ultralytics.nn.modules.block.C2f             [96, 96, 2, True]             
  3                  -1  1    166272  ultralytics.nn.modules.conv.Conv             [96, 192, 3, 2]               
  4                  -1  4    813312  ultralytics.nn.modules.block.C2f             [192, 192, 4, True]           
  5                  -1  1    664320  ultralytics.nn.modules.conv.Conv             [192, 384, 3, 2]              
  6                  -1  4   3248640  ultralytics.nn.modules.block.C2f             [384, 384, 4, True]           
  7                  -1  1   1991808  ultralytics.nn.modules.conv.Conv             [384, 576, 3, 2]              
  8                  -1  2   3985920  ultralytics.nn.modules.block.C2f             [576, 576, 2, True]           
  9                  -1  1    831168  ultralytics.nn.modules.block.SPPF            [576, 576, 5]                 
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  2   1993728  ultralytics.nn.modules.block.C2f             [960, 384, 2]                 
 13                  -1  1    147938  ultralytics.nn.modules.conv.CBAM             [384]                         
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  2    517632  ultralytics.nn.modules.block.C2f             [576, 192, 2]                 
 17                  -1  1     37154  ultralytics.nn.modules.conv.CBAM             [192]                         
 18                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]              
 19            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 20                  -1  2   1846272  ultralytics.nn.modules.block.C2f             [576, 384, 2]                 
 21                  -1  1    147938  ultralytics.nn.modules.conv.CBAM             [384]                         
 22                  -1  1   1327872  ultralytics.nn.modules.conv.Conv             [384, 384, 3, 2]              
 23             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  2   4207104  ultralytics.nn.modules.block.C2f             [960, 576, 2]                 
 25                  -1  1    332450  ultralytics.nn.modules.conv.CBAM             [576]                         
 26        [17, 21, 25]  1   3776854  ultralytics.nn.modules.head.Detect           [2, [192, 384, 576]] 

``# 添加原版论文代码
在ultralytics-8.2.0\ultralytics\nn\modules\conv.py文件下将ChannelAttention、SpatialAttention、CBAM替换成如下代码

class ChannelAttention(nn.Module):
    """
    CBAM混合注意力机制的通道注意力
    """

    def __init__(self, in_channels, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc = nn.Sequential(
            # 全连接层
            # nn.Linear(in_planes, in_planes // ratio, bias=False),
            # nn.ReLU(),
            # nn.Linear(in_planes // ratio, in_planes, bias=False)

            # 利用1x1卷积代替全连接,避免输入必须尺度固定的问题,并减小计算量
            nn.Conv2d(in_channels, in_channels // ratio, 1, bias=False),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels // ratio, in_channels, 1, bias=False)
        )

        self.sigmoid = nn.Sigmoid()

   def forward(self, x):
       avg_out = self.fc(self.avg_pool(x))
       max_out = self.fc(self.max_pool(x))
       out = avg_out + max_out
       out = self.sigmoid(out)
       return out * x

class SpatialAttention(nn.Module):
    """
    CBAM混合注意力机制的空间注意力
    """

    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        out = torch.cat([avg_out, max_out], dim=1)
        out = self.sigmoid(self.conv1(out))
        return out * x

class CBAM(nn.Module):
    """
    CBAM混合注意力机制
    """

    def __init__(self, in_channels, ratio=16, kernel_size=3):
        super(CBAM, self).__init__()
        self.channelattention = ChannelAttention(in_channels, ratio=ratio)
        self.spatialattention = SpatialAttention(kernel_size=kernel_size)

    def forward(self, x):
        x = self.channelattention(x)
        x = self.spatialattention(x)
        return x

完结撒花

### 如何在YOLOv8中集成CBAM模块 #### 集成CBAM模块的意义 CBAM(Convolutional Block Attention Module)是一种有效的注意力机制,能够显著提升目标检测模型的表现。通过引入通道和空间维度上的注意力建模,可以在不增加过多计算负担的情况下提高特征表示能力[^2]。 #### 修改配置文件 为了使YOLOv8支持CBAM功能,需要创建一个新的配置文件`yolov8-CBAM.yaml`来描述带有CBAM结构的网络架构。此操作可以通过复制原始YOLOv8配置模板并在此基础上添加必要的修改完成: ```yaml # yolov8-CBAM.yaml ... backbone: ... - from: [-1,] module: models.common.CBAMBlock args: [64, ] # 参数取决于具体层输入输出channel数 ... ``` 上述代码片段展示了如何向骨干网部分插入一个CBAM块实例。 #### 编写CBAM实现代码 接下来是在项目源码目录下编写具体的CBAM逻辑。通常情况下会将其封装在一个独立的`.py`文件里以便管理和重用。以下是基于PyTorch框架的一个简单版本实现方式: ```python import torch.nn as nn class CBAM(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): super(CBAM, self).__init__() self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types) self.SpatialGate = SpatialGate() def forward(self, x): x_out = self.ChannelGate(x) x_out = self.SpatialGate(x_out) return x_out class ChannelGate(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']): super(ChannelGate, self).__init__() self.gate_channels = gate_channels self.mlp = nn.Sequential( Flatten(), nn.Linear(gate_channels, gate_channels // reduction_ratio), nn.ReLU(), nn.Linear(gate_channels // reduction_ratio, gate_channels) ) self.pool_types = pool_types def forward(self, x): channel_att_sum = None for pool_type in self.pool_types: if pool_type=='avg': avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) channel_att_raw = self.mlp(avg_pool) elif pool_type=='max': max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3))) channel_att_raw = self.mlp(max_pool) if channel_att_sum is None: channel_att_sum = channel_att_raw else: channel_att_sum = channel_att_sum + channel_att_raw scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x) return x * scale class SpatialGate(nn.Module): def __init__(self): super(SpatialGate, self).__init__() kernel_size = 7 self.compress = ChannelPool() self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False) def test(): model = CBAM(gate_channels=64) print(model) if __name__ == '__main__': test() ``` 这段代码实现了完整的CBAM组件,包括通道注意力(`ChannelGate`)与空间注意力(`SpatialGate`)两个子模块,并提供了一个用于验证正确性的测试函数[^3]。 #### 导入自定义模块至主程序 最后一步是要确保整个训练/推理流程都能访问到新加入的功能。这一般涉及到更新项目的初始化入口点以及任何涉及调用该特性的其他地方。例如,在`__init__.py`中注册新的类名;而在负责构建神经网络的任务管理器(`task.py`)里面,则要按照实际情况调整参数传递路径等细节。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值