深度学习之常见激活函数

sigmoid激活函数

定义域和值域:Sigmoid函数的输入可以是任意实数,但其输出值域是(0,1)。这意味着无论输入值如何变化,Sigmoid函数的输出总是介于0和1之间。

非线性:Sigmoid函数是一个非线性函数,这对于神经网络来说很重要,因为它们需要能够学习和模拟非线性关系。

平滑性:Sigmoid函数是连续且可微的,这使得它在优化问题中很有用,因为梯度下降算法需要可微性。

饱和性:当输入值非常大或非常小的时候,Sigmoid函数的梯度接近于0,这会导致梯度消失问题,即在反向传播过程中梯度值变得非常小,从而减缓学习过程。
梯度消失:sigmoid函数的导数值域为(0,0.25),链式求导更新权重,出现梯度消失现象。
sigmoid激活函数的公式为:
在这里插入图片描述

其中, x x x 是输入的实数, e e e 是自然对数的底数。

tanh激活函数

定义域和值域:tanh函数的输入同样可以是任意实数,但其输出值域是(-1,1)。这意味着tanh函数的输出可以是负数,也可以是正数,中心点在0附近。
零中心:与Sigmoid函数不同,tanh函数的输出是零中心的(即当输入为0时,输出为0)。这使得tanh函数在处理数据时更加稳定,因为输出值的均值为0。
非线性:和Sigmoid函数一样,tanh也是非线性的,这对于神经网络学习复杂的非线性关系是必要的。
平滑性:tanh函数是连续且可微的,这使得它在优化算法中使用时,如梯度下降,可以有效地进行计算。
饱和性:与Sigmoid函数相似,tanh函数在输入值非常大或非常小的时候也会遇到饱和问题,导致梯度接近于0,这同样会导致梯度消失问题。
梯度消失:tanh函数的导数值域为(0,1),链式求导更新权重,出现梯度消失现象,但是比sigmoid激活函数好。
以0位对称中心,收敛速度快于sigmoid,提高了权重更新的效率
在这里插入图片描述
在这里插入图片描述

Relu激活函数

线性特性:对于所有正数输入,ReLU函数是线性的。
非线性:尽管对于正数输入是线性的,但ReLU在x=0处有一个不连续点,这使得它成为一个非线性激活函数。
计算效率:ReLU的计算非常简单,只需要比较输入值与0的大小,这使得它在实际应用中非常快速。
稀疏激活:由于ReLU在输入小于0时输出为0,这导致网络中的激活值是稀疏的,即只有一部分神经元在任何给定时间是活跃的。这种稀疏性可以提高网络的计算效率和泛化能力。
缓解梯度消失问题:与Sigmoid或tanh函数相比,ReLU在正数区域的梯度是常数(1),这有助于缓解梯度消失问题,尤其是在深层网络中。
死亡ReLU问题:当输入为负时,ReLU的梯度为0,这可能导致一些神经元在训练过程中永远不会激活,这种现象被称为“死亡ReLU”问题(神经和元失活)。
公式:output = max(0, x)
在这里插入图片描述

Relu的变种激活函数

在这里插入图片描述

图像中的a为常数时为Leaky ReLU,图像中a为可学习参数时为PReLU,其目的都是为了解决神经元失活现象。

ELU激活函数

负值激活:与ReLU不同,ELU在输入为负数时仍然可以产生非零的输出。这有助于网络在负值区域也能进行有效的学习。
非线性:ELU是一个非线性激活函数,这对于神经网络学习复杂的模式和特征是必要的。
稀疏激活:ELU在正数区域是线性的,但在负数区域是指数型的,这导致网络的激活值是稀疏的,有助于提高计算效率和网络的泛化能力。
缓解神经元死亡问题:由于ELU在负数区域的输出不是零,它减少了神经元在训练过程中变得完全无效(即“死亡ReLU”问题)的风险。
自归一化属性:ELU具有自归一化的特性,即随着输入值的增加,ELU的输出趋向于1,这有助于网络在训练过程中自动调整其激活值的范围。

在这里插入图片描述

swish激活函数

非单调性:Swish函数是非单调的,它结合了线性和非线性特征。这使得它在某些情况下比传统的ReLU或Sigmoid函数更有效。
自门控:Swish函数可以看作是一种自门控机制,其中σ(x),σ(x) 作为门控因子,控制x的输出。当x为正时,σ(x)接近1,输出接近x;当x为负时,σ(x)接近0,输出接近0。
平滑性:Swish函数是连续且可微的,这使得它在优化算法中易于使用。
在这里插入图片描述

swish变种激活函数h-swish函数,使用relu6代替sigmoid函数

公式:f(x)= relu6(x+3)/6
在这里插入图片描述
目的:减少计算资源,详细资料可自行了解

完结撒花

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值